Skip to main content
Log in

Void nucleation by inclusion cracking

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Void nucleation is studied both experimentally and computationally with the aim of identifying a macroscopic criterion for nucleation by particle cracking. Three types of circumferentially notched cylindrical specimens made of a low-alloy steel were used, in order to vary the stress triaxiality in the notch region. The tensile tests were interrupted at various loads below the fracture load. The specimens were sectioned parallel to the loading axis, and the locations of cracked and uncracked titanium-nitride inclusions were identified. No evidence was found of void nucleation by inclusion debonding. Finite-element calculations were carried out for each specimen geometry using conventional isotropic-hardening plasticity theory. The ability of various potential void-nucleation criteria to predict the onset of void nucleation by inclusion cracking is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.F. Tipper: Metallurgica, 1949, vol. 39, pp. 133–37.

    Google Scholar 

  2. K.E. Puttick: Phil. Mag., 1959, vol. 4, pp. 964–69.

    CAS  Google Scholar 

  3. H.C. Rogers: Trans. TMS-AIME, 1960, vol. 281, pp. 498–506.

    Google Scholar 

  4. C.D. Beachem: Trans. ASM, 1963, vol. 56, pp. 318–26.

    Google Scholar 

  5. J. Gurland and J. Plateau: Trans. ASM, 1963, vol. 56, pp. 441–54.

    Google Scholar 

  6. F.A. McClintock: J. Appl. Mech., 1968, vol. 35, pp. 363–71.

    Google Scholar 

  7. J.R. Rice and D.M. Tracey: J. Mech. Phys. Solids, 1969, vol. 17, pp. 201–17.

    Article  Google Scholar 

  8. S.H. Goods and L.M. Brown: Acta Metall., 1979, vol. 27, pp. 1–15.

    Article  CAS  Google Scholar 

  9. W.M. Garrison and N.R. Moody: J. Phys. Chem. Solids, 1987, vol. 48, pp. 1035–74.

    Article  CAS  Google Scholar 

  10. V. Tvergaard: Adv. Appl. Mech., 1990, vol. 27, pp. 83–151.

    Article  Google Scholar 

  11. J.W. Hancock: in Topics in Fracture and Fatigue, A.S. Argon, ed., Springer-Verlag, New York, NY, 1992, pp. 99–144.

    Google Scholar 

  12. A. Needleman, V. Tvergaard, and J.W. Hutchinson: in Topics in Fracture and Fatigue, A.S. Argon, ed., Springer-Verlag, New York, NY, 1992, pp. 145–78.

    Google Scholar 

  13. R.M. McMeeking: in Topics in Fracture and Fatigue, A.S. Argon, ed., Springer-Verlag, New York, NY, 1992, pp. 179–96.

    Google Scholar 

  14. A. Pineau: in Topics in Fracture and Fatigue, A.S. Argon, ed., Springer-Verlag, New York, NY, 1992, pp. 197–234.

    Google Scholar 

  15. M. Gologanu, J.B. Leblond, G. Perrin, and J. Devaux: Int. J. Solids Struct., 2001, vol. 38, pp. 5581–94.

    Article  Google Scholar 

  16. A.A. Benzerga: J. Mech. Phys. Solids, 2002, vol. 50, pp. 1331–62.

    Article  Google Scholar 

  17. T. Pardoen and J.W. Hutchinson: Acta Mater., 2003, vol. 51, pp. 133–48.

    Article  CAS  Google Scholar 

  18. M.F. Horstemeyer, S. Ramaswamy, and M. Negrete: Mech. Mater., 2003, vol. 35, pp. 675–87.

    Article  Google Scholar 

  19. C.I.A. Thomson, M.J. Worswick, A.K. Pilkey, and D.J. Lloyd: J. Mech. Phys. Solids, 2003, vol. 51, pp. 127–46.

    Article  Google Scholar 

  20. R.O. Ritchie and R.M. Horn: Metall. Trans. A, 1978, vol. 9A, pp. 331–41.

    CAS  Google Scholar 

  21. F.M. Beremin: Metall. Trans. A, 1981, vol. 12A, pp. 723–31.

    Google Scholar 

  22. G. Le Roy, J.D. Embury, G. Edward, and M.F. Ashby: Acta Metall., 1981, vol. 29, pp. 1509–22.

    Article  Google Scholar 

  23. J.L. Maloney and W.M. Garrison, Jr.: Scripta Metall., 1989, vol. 23, pp. 2097–100.

    Article  CAS  Google Scholar 

  24. S. Lee, L. Majno, and R.J. Asaro: Metall. Trans. A, 1985, vol. 16A, pp. 1633–48.

    CAS  Google Scholar 

  25. R.O. Ritchie and A.W. Thompson: Metall. Trans. A, 1985, vol. 16A, pp. 233–48.

    CAS  Google Scholar 

  26. D.M. Goto, D.A. Koss, and V. Jablokov: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2835–42.

    Article  CAS  Google Scholar 

  27. G. Green and J.F. Knott: J. Eng. Mech. Technol., 1976, vol. 98, pp. 37–46.

    CAS  Google Scholar 

  28. J.Q. Clayton and J.F. Knott: Met. Sci., 1976, vol. 10, pp. 63–71.

    Article  CAS  Google Scholar 

  29. D.A. Curry and P.L. Pratt: Mater. Sci. Eng., 1979, vol. 37, pp. 223–35.

    Article  CAS  Google Scholar 

  30. J.B. Cox and J.R. Low: Metall. Trans., 1974, vol. 5, pp. 1457–70.

    Article  CAS  Google Scholar 

  31. P.E. Magnusen, E.M. Dubensky, and D.A. Koss: Acta Metall., 1988, vol. 36, pp. 1503–09.

    Article  CAS  Google Scholar 

  32. A.S. Argon, J. Im, and A. Needleman: Metall. Trans., 1975, vol. 6, pp. 815–24.

    Google Scholar 

  33. A.S. Argon, J. Im, and R. Safoglu: Metall. Trans., 1975, vol. 6, pp. 825–37.

    Google Scholar 

  34. A.S. Argon and J. Im: Metall. Trans., 1975, vol. 6, pp. 839–51.

    Google Scholar 

  35. D. Brooksbank and K.W. Andrews: J. Iron Steel Inst., 1968, vol. 206, pp. 595–99.

    CAS  Google Scholar 

  36. C.L. Briant and S.K. Banerji: Metall. Trans. A, 1982, vol. 13A, pp. 827–36.

    Google Scholar 

  37. J.W. Bray, J.L. Maloney, K.S. Raghavan, and W.M. Garrison, Jr.: Metall. Trans. A, 1991, vol. 22A, pp. 2277–85.

    CAS  Google Scholar 

  38. L.E. Iorio and W.M. Garrison, Jr.: Scripta Mater., 2002, vol. 46, pp. 863–68

    Article  CAS  Google Scholar 

  39. J.R. Fisher and J. Gurland: Met. Sci., 1981, vol. 15, pp. 185–92.

    Article  CAS  Google Scholar 

  40. A. Needleman: J. Appl. Mech., 1987, vol. 54, pp. 525–31.

    Article  Google Scholar 

  41. C.I.A. Thomson, M.J. Worswick, A.K. Pilkey, D.J. Lloyd, and G. Burger: J. Mech. Phys. Solids, 1999, vol. 47, pp. 1–26.

    Article  Google Scholar 

  42. M.F. Horstemeyer and A.M. Gokhale: Int. J. Solids Struct., 1999, vol. 36, pp. 5029–55.

    Article  Google Scholar 

  43. D. Steglich, T. Siegmund, and W. Brocks: Comp. Mater. Sci., 1999, vol. 16, 404–13.

    Article  CAS  Google Scholar 

  44. J.E. Neimark: Sc.D. Thesis, MIT, Cambridge, MA, 1959.

    Google Scholar 

  45. J.W. Hancock and A.C. Mackenzie: J. Mech. Phys. Solids, 1977, vol. 14, pp. 147–69.

    Google Scholar 

  46. A.C. Mackenzie, J.W. Hancock, and D.K. Brown: Eng. Fract. Mech., 1977, vol. 9, pp. 167–88.

    Article  CAS  Google Scholar 

  47. F.M. Beremin: Metall. Trans. A, 1983, vol. 24A, pp. 2272–87.

    Google Scholar 

  48. R. Becker, A. Needleman, O. Richmond, and V. Tvergaard: J. Mech. Phys. Solids, 1988, vol. 36, pp. 317–51.

    Article  Google Scholar 

  49. M.F. Horstemeyer, J. Lathrop, A.M. Gokhale, and M. Dighe: Theor. Appl. Frac. Mech., 2000, vol. 33, pp. 31–47.

    Article  CAS  Google Scholar 

  50. R.H. Van Stone and T.B. Cox: in Fractography-Microscopic Cracking Processes, ASTMSTP 600, C.D. Beacham and W.R. Warke, eds., ASTM, Philadelphia, PA, 1976, pp. 5–29.

    Google Scholar 

  51. A. Needleman: J. Appl. Mech., 1972, vol. 20, pp. 111–20.

    Google Scholar 

  52. V. Tvergaard: J. Mech. Phys. Solids, 1976, vol. 24, pp. 291–304.

    Article  Google Scholar 

  53. M.N. Shabrov and A. Needleman: Model. Simul. Mater. Sci. Eng., 2002, vol. 10, pp. 163–83.

    Article  Google Scholar 

  54. A.L. Gurson: Ph.D. Thesis, Brown University, Providence, RI, 1975.

    Google Scholar 

  55. G. Rousselier: Nucl. Eng. Design, 1987, vol. 105, pp. 97–111.

    Article  CAS  Google Scholar 

  56. A. Needleman and J.R. Rice: in Mechanics of Sheet Metal Forming, D.P. Koistinen and N.-M. Wang, eds., Plenum Press, New York, NY, 1978, pp. 237–65.

    Google Scholar 

  57. C.L. Briant, E. Sylven, M.N. Shabrov, D.H. Sherman, L. Chuzhoy, and A. Needleman: Mechanisms and Mechanics of Fracture, Symp. in Honor of Professor J.F. Knott, W.O. Soboyejo, J.J. Lewandowski, and R.O. Ritchie, ed., TMS, Warrendale, PA, 2002, pp. 169–74.

    Google Scholar 

  58. J.E. King and J.F. Knott: Met. Sci., 1981, vol. 15, pp. 1–6.

    Article  CAS  Google Scholar 

  59. B.A. Senior, F.W. Noble, and B.L. Eyre: Acta Metall., 1986, vol. 34, pp. 1321–27.

    Article  CAS  Google Scholar 

  60. S. Floreen and H.W. Haydern: Met. Sci. J., 1970, vol. 4, pp. 77–80.

    Article  CAS  Google Scholar 

  61. M. Saje, J. Pan, and A. Needleman: Int. J. Fract., 1982, vol. 19, pp. 163–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shabrov, M.N., Briant, C.L., Needleman, A. et al. Void nucleation by inclusion cracking. Metall Mater Trans A 35, 1745–1755 (2004). https://doi.org/10.1007/s11661-004-0083-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0083-y

Keywords

Navigation