Skip to main content
Log in

The influence of tensile stress states on the failure of HY-100 steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The failure of an HY-100 steel plate has been examined as a function of stress state using notched and un-notched axisymmetric tensile specimens. The results show that increasing stress triaxiality leads to a rapid decrease in failure strains in a manner that is exponentially dependent on the degree of triaxiality. Two ductile failure mechanisms are identified: a void coalescence process, in which relatively equiaxed voids grow to impingement, and a void-sheet process, which links by a shear instability process large, elongated inclusion-initiated voids. The void-sheet mechanism intervenes and limits ductility at high-stress triaxialities in transversely oriented HY steel plate material, whereas the former process controls failure in longitudinally oriented material. These orientation effects are related to the morphology and alignment of the nonmetallic inclusion stringers that act as the primary void nucleation sites. Calcium treatments for inclusion-shape control improve ductility, especially at intermediate-stress triaxialities, primarily by suppressing the local conditions which give rise to the void-sheet instability process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Norris, J.E. Reaugh, B. Moran, and D.F. Quinones: J. Eng. Mater. Technol., 1978, vol. 100, pp. 279–86.

    CAS  Google Scholar 

  2. A. Pineau: Proc. 5th Int. Conf. on Fracture, D. Francois, ed., Pergamon Press, Elmsford, NY, 1981, vol. 2, pp. 533–77.

    Google Scholar 

  3. F.M. Beremin: Metall. Trans. A, 1983, vol. 14A, pp. 2277–87.

    CAS  Google Scholar 

  4. G. Rousselier: Nucl. Eng. Design, 1987, vol. 105, pp. 97–111.

    Article  CAS  Google Scholar 

  5. J. LeMaitre: Eng. Frat. Mech., 1986, vol. 25, pp. 523–37.

    Article  Google Scholar 

  6. J.W. Hancock and A.C. MacKenzie: J. Mech. Phys. Solids, 1976, vol. 24, pp. 147–69.

    Article  Google Scholar 

  7. A.D. MacKenzie, J.W. Hancock, and D.K. Brown: Eng. Fract. Mech., 1977, vol. 9, pp. 167–88.

    Article  CAS  Google Scholar 

  8. J.W. Hancock and D.K. Brown: J. Mech. Phys. Solids, 1983, vol. 31, pp. 1–24.

    Article  Google Scholar 

  9. J.W. Hancock and R.D. Thomson: Mater. Sci. Technol., 1985, vol. 1, pp. 684–90.

    CAS  Google Scholar 

  10. G.R. Johnson and W.H. Cook: Eng. Fract. Mech., 1985, vol. 21, pp. 31–48.

    Article  Google Scholar 

  11. B. Marini, F. Mudry, and A. Pineau: Eng. Fract. Mech., 1985, vol. 22, pp. 989–96.

    Article  CAS  Google Scholar 

  12. R. Batisse, M. Bethmont, G. Devesa, and G. Rouseelier: Nucl. Eng. Design, 1987, vol. 105, pp. 113–20.

    Article  CAS  Google Scholar 

  13. S. Jun: Eng. Fract. Mech., 1991, vol. 39, pp. 799–805.

    Article  Google Scholar 

  14. R. Becker, A. Needleman, O. Richmond, and V. Tvergaard: J. Mech. Phys. Solids, 1988, vol. 36, pp. 317–51.

    Article  Google Scholar 

  15. T. Pardoen, I. Doghri, and R. Delannay: Acta Mater., 1998, vol. 46, pp. 541–52.

    Article  CAS  Google Scholar 

  16. T. Pardoen and F. Delannay: Metall. Mater Trans. A, 1998, vol. 29A, pp. 1895–1909.

    Article  CAS  Google Scholar 

  17. A.G. Franklin: J. Iron Steel Inst., 1969, vol. 207, pp. 181–86.

    CAS  Google Scholar 

  18. D. Chae: The Pennsylvania State University, University Park, PA, unpublished research, 1998.

  19. A.D. Wilson: in Inclusion and Their Influence on Material Behavior, R. Rungta, ed., ASM INTERNATIONAL, Materials Park, OH, 1989, pp. 21–34.

    Google Scholar 

  20. M.L. Lovato and M.G. Stout: Metall. Trans. A, 1992, vol. 23A, pp. 935–51.

    CAS  Google Scholar 

  21. D. Goto: The Pennsylvania State University, University Park, PA, unpublished research, 1998.

  22. V. Jablokov: M.S. Thesis, The Pennsylvania State University, University Park, PA, 1998.

    Google Scholar 

  23. T.B. Cox and J.R. Low: Metall. Trans., 1974, vol. 5, pp. 1457–70.

    CAS  Google Scholar 

  24. R.H. Van Stone, T.B. Cox, J.R. Low, and J.A. Psioda: Int. Met. Rev., 1985, vol. 30, pp. 157–79.

    Google Scholar 

  25. W.M. Garrison and N.R. Moody: J. Phys. Chem. Solids, 1987, vol. 48, pp. 1035–74.

    Article  CAS  Google Scholar 

  26. J.P. Bandstra, D.M. Goto, and D.A. Koss: Mater. Sci. Eng. A, 1998, vol. A249, pp. 46–54.

    CAS  Google Scholar 

  27. J.R. Rice and D.M. Tracey: J. Mech. Phys. Solids, 1969, vol. 17, pp. 201–17.

    Article  Google Scholar 

  28. M.J. Worswick and R. Pick: J. Mech. Phys. Solids, 1990, vol. 38, pp. 601–25.

    Article  Google Scholar 

  29. R. Becker: J. Mech. Phys. Solids, 1987, vol. 35, pp. 577–99.

    Article  Google Scholar 

  30. P.F. Thomason: Acta Metall., 1985, vol. 33, pp. 1079–85 and 1087–95.

    Article  CAS  Google Scholar 

  31. C.L. Hom and R.M. McMeeking: J. Appl. Mech., 1989, vol. 56, pp. 309–17.

    Article  Google Scholar 

  32. F.A. McClintock: J. Appl. Mech., Trans. ASME, 1968, vol. 90, pp. 363–71.

    Google Scholar 

  33. J.P. Bandstra: The University of Pittsburgh at Johnstown, private communication, 1998.

  34. L.M. Brown and J.D. Embury: Proc. 3rd Int. Conf. on Strength of Metals and Alloys, Institute of Metals, London, 1973, pp. 164–69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goto, D.M., Koss, D.A. & Jablokov, V. The influence of tensile stress states on the failure of HY-100 steel. Metall Mater Trans A 30, 2835–2842 (1999). https://doi.org/10.1007/s11661-999-0121-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0121-x

Keywords

Navigation