Skip to main content
Log in

Ultrasonic attenuation peak in steel and aluminum alloy during rotating bending fatigue

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Using electromagnetic acoustic resonance (EMAR), we studied the evolution of the surface shearwave attenuation and phase velocity in a 0.45 pct C steel and a 5052 aluminum alloy exposed to rotating bending fatigue. In the EMAR method, we used electromagnetic acoustic transducers (EMATs) for the contactless measurements of the axial shear wave, which is a surface shear wave that propagates along a cylindrical surface in the circumferential direction, with an axial polarization. There has been no previous report of continuous and contactless monitoring of the surface wave attenuation and velocity being performed without interrupting the fatigue. The attenuation coefficient always showed sharp peaks around 90 pct of the fatigue life, independent of the fatigue-stress amplitude. To interpret this phenomenon, we made crack-growth observations using replicas and measurements of recovery of attenuation and velocity by stopping the cyclic loading before and after the peak. From these results, we concluded that the evolution of the ultrasonic properties is caused by a drastic change in dislocation mobility being accompanied by the crack growth at the final stage of the fatigue life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Schenck, E. Schmidtmann, and H. Kettler: Arch. Eisenhuettenw., 1960, vol. 31, pp. 659–69.

    Google Scholar 

  2. W.J. Bratina and D. Mills: Can. Metall. Q., 1962, vol. 1, pp. 83–97.

    CAS  Google Scholar 

  3. D. Mills and W. Bratina: Proc. Symp. on Physics and Nondestructive Testing, San Antonio, TX, 1963, Southwest Research Institute, pp. 356–71.

  4. Z. Pawlowski: Proc. 4th Int. Conf. on Nondestructive Testing, Butterworth and Co., London, 1964, pp. 192–95.

    Google Scholar 

  5. V.S. Ivanova: The Role of Dislocations in the Strengthening and Failure of Metals, National Lending Library for Science and Technology, 1967.

  6. W.J. Bratina: in Physical Acoustics IIIA, W.P. Mason, ed., Academic Press, New York, NY, 1966, pp. 268–91.

    Google Scholar 

  7. R. Truell and A. Hikata: Fatigue and Ultrasonic Attenuation, ASTM-STP 213, ASTM, Philadelphia, PA, 1957, pp. 63–70.

    Google Scholar 

  8. S. Golovin and A. Puskar: Mater. Sci. Forum, 1993, vols. 119–121, pp. 407–12.

    Article  Google Scholar 

  9. G. Fei and Z. Zhu: Phys. Status Solidi (a), 1993, vol. 140, pp. 119–26.

    Article  CAS  Google Scholar 

  10. Z. Zhu and G. Fei: J. Alloys Compounds, 1994, vols. 211–212, pp. 93–95.

    Article  Google Scholar 

  11. H. Ogi, M. Hirao, and K. Minoura: J. Appl. Phys., 1997, vol. 81, pp. 3677–84.

    Article  CAS  Google Scholar 

  12. M. Hirao, H. Ogi, and H. Fukuoka: Rev. Sci. Instrum., 1993, vol. 64, pp. 3198–3205.

    Article  CAS  Google Scholar 

  13. M. Hirao and H. Ogi: Ultrasonics, 1997, vol. 35, pp. 413–21.

    Article  CAS  Google Scholar 

  14. H. Ogi, K. Minoura, and M. Hirao: in Review of Progress in QNDE, D.O. Thompson and D.E. Chimenti, eds., Plenum Press, New York, NY, 1996, pp. 1939–44.

    Google Scholar 

  15. W.L. Johnson, B.A. Auld, and G.A. Alers: in Review of Progress in QNDE, D.O. Thompson and D.E. Chimenti, eds., Plenum Press, New York, NY, 1994, pp. 1603–09.

    Google Scholar 

  16. G.L. Petersen, C.M. Fortunko, B.B. Chick, and M. Hirao: Rev. Sci. Instrum., 1994, vol. 65, pp. 192–99.

    Article  CAS  Google Scholar 

  17. H. Ogi, M. Hirao, and T. Honda: J. Acoust. Soc. Am., 1995, vol. 98, pp. 458–64.

    Article  Google Scholar 

  18. A.S. Nowick and B.S. Berry: Anelastic Relaxation in Crystalline Solids, Academic Press, New York, NY, 1967.

    Google Scholar 

  19. A. Granato and K. Lucke: J. Appl. Phys., 1956, vol. 27, pp. 583–93.

    Article  Google Scholar 

  20. M. Klesnil and P. Lukas: Fatigue of Metallic Materials, Elsevier, New York, NY, 1980.

    Google Scholar 

  21. A.H. Cottrell and B.A. Bilby: Proc. Phys. Soc., 1949, vol. A62, pp. 49–62.

    Google Scholar 

  22. A. Granato, A. Hikata, and K. Lucke: Acta Metall., 1958, vol. 6, pp. 470–80.

    Article  CAS  Google Scholar 

  23. W.J. Bratina: in Physical Acoustics IIIA, W.P. Mason, ed., Academic Press, New York, NY, 1966, p. 278.

    Google Scholar 

  24. H. Ogi, A. Tsujimoto, M. Hirao, and H. Ledbetter: Acta Mater., 1999, vol. 47, pp. 3745–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogi, H., Hamaguchi, T. & Hirao, M. Ultrasonic attenuation peak in steel and aluminum alloy during rotating bending fatigue. Metall Mater Trans A 31, 1121–1128 (2000). https://doi.org/10.1007/s11661-000-0107-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0107-1

Keywords

Navigation