Skip to main content
Log in

Cyclic-Tension Fatigue Behavior in a SS400 Steel Plate Studied Using Ultrasonic Linear and Nonlinear Techniques

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Three acoustic probe configurations were used to assess cyclic-tension fatigue in SS400 steel at room temperature via a diffracted horizontally polarized shear wave (SH) transmission method. Linear analysis of the propagation time and amplitude of shear and longitudinal waves with fatigue progression revealed that the linear behavior was governed by residual stress, attributed to the acoustoelastic effect. Specifically, the propagation time of the shear waves increased and the wave amplitude decreased with fatigue progression. Our results also revealed that the propagation paths of the waves became deeper with progressive fatigue. Additionally, when the probe angle was optimized for diffraction, the estimated change in the length prior to fatigue breakage was 0.61 pct. Nonlinear analysis results revealed that second harmonic β-parameters increased as fatigue progressed, up to ~800 pct for the optimal frequency configuration; this was attributed to an increase in the number of dislocation-associated viscoelastic effects. The proposed approach shows great potential for nondestructive evaluation of metal fatigue via parameter analysis of residual stress and dislocation variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Granato and K. Lücke: J. Appl. Phys., 1956, vol. 27, pp. 583–593.

    Article  Google Scholar 

  2. W.J. Bratina and D. Mills: Can. Metall. Q., 1962, vol. 1, pp. 83–97.

    Article  Google Scholar 

  3. W.J. Bratina: Physical Acoustic, Academic Press, New York, Massachusetts, 1966, pp. 223–291.

    Google Scholar 

  4. Y. Katsumura, S. Takatsu, and K. Kobori: J. JSPM., 1973, vol. 20, pp. 23–29.

    Google Scholar 

  5. J.H. Liu, G.L. Li, X.Y. Hao, D.B. Zeng, and Zh.H. Sun: Mater. Lett., 2001, 50, pp. 194–198.

    Article  Google Scholar 

  6. S. Miura, M. Kobayashi, and Y. Oiwake: J. JSME., 2002, vol. 68, pp. 1533–1539.

    Article  Google Scholar 

  7. M. Fukuhara: J. New Ceram., 1997, vol. 11, pp. 21–27.

    Google Scholar 

  8. A. Hikata, B.B. Chick, and C. Elbaum: J. Appl. Phys., 1965, vol. 36, pp. 229–236.

    Article  Google Scholar 

  9. A. Hikata, F.A. Sewell, Jr., and C. Elbaum: Phys. Rev., 1966, vol. 151, pp. 442–449.

    Article  Google Scholar 

  10. A. Hikata and C. Elbuam: Phys. Rev., 1966, vol. 144 (2), pp. 469–477.

    Article  Google Scholar 

  11. W.P. Mason, D.N. Beshers, M.C. Jon, and J.T. Kuo: Ultrasonics, vol. 13, 1975, pp. 128–131.

    Article  Google Scholar 

  12. M.C. Jon, W.P. Mason, and D.N. Beshers: J. Appl. Phys., vol. 49, 1978, pp. 5871–5879.

    Article  Google Scholar 

  13. J.H. Cantrell and W.T. Yost: Philos. Mag. A, 1994, vol. 69, pp. 315–26.

    Article  Google Scholar 

  14. J.H. Cantrell: J. Appl. Phys., 1994, vol. 76, pp. 3372–3380.

    Article  Google Scholar 

  15. J.H. Cantrell: Proc. R. Soc. Lond. A, 2004, vol. 460, pp. 757–780.

    Article  Google Scholar 

  16. J.H. Cantrell: J. Appl. Phys., 2009, vol. 105, pp. 043520–043520–7.

    Article  Google Scholar 

  17. J.K. Na, J.H. Cantrell, and W.T. Yost: Review of Progress in Quantitative Nondestructive Evaluation, Plenum, New York, NY, 1996, pp. 1347–1353.

    Book  Google Scholar 

  18. J.H. Cantrell and W.T. Yost: Int. J. Fatigue., 2001, vol. 23, pp. 487–90.

    Article  Google Scholar 

  19. K.Y. Jhang and K.C. Kim: Ultrasonics, 1999, vol. 37, pp. 39–44.

    Article  Google Scholar 

  20. S.P. Sagar, S. Das, N. Parida, and D.K. Bhattacharya: Scripta Mater., 2006, vol. 55, pp. 199–202.

    Article  Google Scholar 

  21. J.Y. Kim, L.J. Jacobs, J. Qu, and J.W. Littles: J. Acousto. Soc. Am., 2006, vol. 120, pp. 1266–1273.

    Article  Google Scholar 

  22. J. Herrmann, J.Y. Kim, L.J. Jacobs, J. Qu, J.W. Littles, and M.F. Savage: J. Appl. Phys., 2006, vol. 99, pp. 124913–124913–7.

    Article  Google Scholar 

  23. R.K. Oruganti, R. Sivaramanivas, T.N. Karthik, V. Kommareddy, B. Ramadurai, B. Ganesan, E.J. Nieters, M.F. Gigliotti, M.E. Keller, and M.T. Shyamsunder: Int. J. Fatigue, 2007, vol. 29, pp. 2032–2039.

    Article  Google Scholar 

  24. A. Metya, N. Parida, D.K. Bhattacharya, N.R. Bandyopadhyay, and S.P. Sagar: Metall. Mater. Trans. A, 2007, vol. 38, pp. 3087–3092.

    Article  Google Scholar 

  25. G. Shui, J.Y. Kim, J. Qu, Y.S. Wang, and L.J. Jacobs: NDT&E. Int., 2008, vol. 41, pp. 326–329.

    Article  Google Scholar 

  26. V.V.S.J. Rao, E. Kannan, R.V. Prakash, and K. Balasubramaniam: Mater. Sci. Eng. A., 2009, vol. 512, pp. 92–99.

    Article  Google Scholar 

  27. Anish Kumar, R.R. Adharapurapu, J.W. Jones and T.M. Pollock: Scripta Mater., 2011, vol. 64, pp. 65-68.

    Article  Google Scholar 

  28. M. Shiwa, Y. Furuya, H. yamawaki, K. Ito, and M. Enoki: Mater. Trans., 2010, vol. 51, pp. 1404–1408.

    Article  Google Scholar 

  29. M. Fukuhara and A. Sanpei: Phys. Rev., 1994, vol. B49, pp. 99–105.

    Article  Google Scholar 

  30. M. Fukuhara: J. Jpn. New Ceram., 1997, vol. 11, pp. 21–27.

    Google Scholar 

  31. Y. Kogure: in Handbook of Ultrasonic Waves, K. Takagi, ed., Maruzen, Tokyo, 1999, pp. 273–76.

  32. G.A. Alers: Phys. Rev. 1955, vol. 97, pp. 863–869.

    Article  Google Scholar 

  33. H. Ogi, N. Suzuki, and M. Hirao: Metall. Mater. Trans. A, 1998, vol. 29, pp. 2987–2993.

    Article  Google Scholar 

  34. H. Yamagishi and M. Fukuhara: Mater. Trasns., 2007, vol. 48, pp. 550-555.

    Article  Google Scholar 

  35. H. Yamagishi, M. Fukuhara, and A. Chiba: Metall. Mater. Trans. A, 2008, vol. 40A, pp. 486–93.

    Google Scholar 

  36. Hideki Yamagishi, Mikio Fukuhara and Akihiko Chiba: Mater. Trans., 2010, vol. 51, 962-968.

    Article  Google Scholar 

  37. H. Yamagishi, M. Fukuhara, H. Matsumoto and A. Chiba: Metall. Mater. Trans. A., 2010, vol. 41, pp. 2151-2161.

    Article  Google Scholar 

  38. Hideki Yamagishi, Mikio Fukuhara and Akihiko Chiba: Mater. Trans., 2010, vol. 51, pp. 1255-1263.

    Article  Google Scholar 

  39. Hideki Yamagishi, Mikio Fukuhara and Akihiko Chiba: Mater. Trans., 2010, vol. 51, pp. 2025-2032.

    Article  Google Scholar 

  40. H. Yamagishi and M. Fukuhara: Acta. Mater., 2012, vol. 60, pp. 4759-4767.

    Article  Google Scholar 

  41. M.S. Blanter, I.S. Golovin, H. Neuhauser, and H.-R. Sinning: in Internal Friction in Metallic Materials, Springer, Berlin, 2007, pp. 142–44.

  42. P.O. Moore, ed.: Nondestructive Testing Handbook, American Society for Nondestructive Testing, Columbus, OH, 2007, pp. 321–23.

  43. A. Takaoki: J. Japan Inst. METALS, 1959, vol. 23, pp. 108–112.

    Google Scholar 

  44. M. Fukuhara: Open Acoust. J., 2012, vol. 5, pp. 1–7.

    Article  Google Scholar 

  45. Mikio Fukuhara and Yoshiyuki Kuwano: NDT&E. Int., 1998, vol. 31, pp. 201–210.

    Article  Google Scholar 

  46. S.P. Sagar, A.K. Metya, M. Ghosh and S. Sivaprasad: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2895-2898.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Yamagishi.

Additional information

Manuscript submitted February 23, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamagishi, H., Fukuhara, M. Cyclic-Tension Fatigue Behavior in a SS400 Steel Plate Studied Using Ultrasonic Linear and Nonlinear Techniques. Metall Mater Trans A 46, 5114–5125 (2015). https://doi.org/10.1007/s11661-015-3135-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3135-6

Keywords

Navigation