Skip to main content

Advertisement

Log in

Immune reconstitution of acquired immune deficiency syndrome

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Acquired immune deficiency syndrome (AIDS) is a chronic infectious disease, which the patients are infected with human immunodeficiency virus (HIV). HIV damages the human’s immune function and causes CD4 cell decline in the number and function. Immune reconstitution is an important treatment to AIDS. Bone marrow transplantation, adoptive immune cell therapy and cytokines infusion can all assist the immune reconstitution; highly active antiretroviral therapy (HAART) can effectively control the virus replication and benefit the immune reconstitution. HAART combined with immunotherapy is an important method of immune reconstitution in AIDS patients. Chinese medicine is playing a more and more important role in immune reconstitution. Immune reconstitution has always been effective in the whole treatment of AIDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin WS. Clinical immunology. Shaanxi: Publishing Company of the Fourth Military University; 2002:339.

    Google Scholar 

  2. De Voe PW, Buckley RH, Shirley LR, Darby CP, Ward FE, Mickey GH, et al. Successful immune reconstitution in severe combined immunodeficiency despite Epstein-Barr virus and cytomegalovirus infections. Clin lmmunol Immunopathol 1985; 34:48–59.

    Article  Google Scholar 

  3. Ghezzi S, Vicenzi E, Soldini L, Tambussi G, Murone M, Lazzarin A, et al. Experiences in immune reconstitution. The rationale for interleukin-2 administration to HIV-infected individuals. J Biol Regul Homeost Agents 1997;11:74–78.

    CAS  PubMed  Google Scholar 

  4. Abrams DI, Volberding PA. Alpha interferon therapy of AIDS-associated Kaposi’s sarcoma. Semin Oncol 1986;13:43–47.

    CAS  PubMed  Google Scholar 

  5. Lane HC, Masur H, Gelmann EP, Fauci AS. Therapeutic approaches to patients with AIDS. Cancer Res 1985;45:4674s–4676s.

    CAS  PubMed  Google Scholar 

  6. Carey JT, Lederman MM, Toossi Z, Edmonds K, Hodder S, Calabrese LH, et al. Augmentation of skin test reactivity and lymphocyte blastogenesis in patients with AIDS treated with transfer factor. JAMA 1987;257:651–655.

    Article  CAS  PubMed  Google Scholar 

  7. Cowly S. The biology of HIV infection. Lepr Rev 2001;72:212–220.

    Google Scholar 

  8. Rosenberg ES, Billingsley JM, Caliendo AM, Boswell SL, Sax PE, Kalams SA, et al. Vigorous HIV-1specific CD4+ T cell responses associated with control of viremia. Science 1997; 278: 1447–1450.

    Article  CAS  PubMed  Google Scholar 

  9. Autran B, Hadida F, Hass G. Evolution and plasticity of CTL responses against HIV. Curr Opin Immunol 1996;8: 546–553.

    Article  CAS  PubMed  Google Scholar 

  10. Mellors JW, Munoz A, Giorgi JV, Margolick JB, Tassoni CJ, Gupta P, et al. Plama viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Ann Intern Med 1997; 126:946–954.

    CAS  PubMed  Google Scholar 

  11. Li TS, Wang AX, Qiu ZF. Immunopathogenesis and immunologic reconstitution of AIDS. Natl Med J China (Chin) 2001;81:310–313.

    CAS  Google Scholar 

  12. Barcellini W, Rizzardi GP, Borghi MO, Fain C, Lazzarin A, Meroni PL. TH1 and TH2 cytokine production by peripheral blood mononuclear cells from HIV-infected patients. AIDS. 1994; 8:757–762.

    Article  CAS  PubMed  Google Scholar 

  13. Meyard L, Schuitemaker H, Miedema F. T-cell dysfunction in HIV infection: anergy due to antigen-presenting cell function? Immunol Today 1993;14:161–164.

    Article  Google Scholar 

  14. Gougeon ML, Lecoeur H, Dulioust A, Enouf MG, Crouvoiser M, Goujard C, et al. Programmed cell death in peripheral lymphocytes from HIV-infected persons: increased susceptibility to apoptosis of CD4 and CD8 T cells correlates with lymphocyte activation and with disease progression. J Immunol 1996;156:3509–3520.

    CAS  PubMed  Google Scholar 

  15. Ho DD. Therapy of HIV infections: problems and prospects. Bull NY Acad Med 1996; 73:37–45.

    CAS  Google Scholar 

  16. Autran B, Carcelain G, Li TS, Blanc C, Mathez D, Tubiana R, et.al. Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science 1997;277:112–116.

    Article  CAS  PubMed  Google Scholar 

  17. Kitahata MM, Gange SJ, Abraham AG, Merriman B, Saag MS, Justice AC, et al. Effect of early versus deferred antiretroviral therapy for HIV on survival. N Engl J Med 2009; 360:1815–1826.

    Article  CAS  PubMed  Google Scholar 

  18. Hütter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 2009;360:692–698.

    Article  PubMed  Google Scholar 

  19. Verhoeyen E, Costa C, Cosset FL. Lentiviral vector gene transfer into human T cells. Methods Mol Biol 2009;506:97–114.

    Article  CAS  PubMed  Google Scholar 

  20. Hoffmann C, Stellbrink HJ, Dielschneider T, Degen O, Stoehr A, Knechten H, et al. Adoptive transfer of syngeneic T cells in HIV-1 discordant twins indicates rapid regulation of T-cell homeostasis. Br J Haematol 2007;136:641–648.

    Article  CAS  PubMed  Google Scholar 

  21. Walker RE, Bechtel CM, Natarajan V, Baseler M, Hege KM, Metcalf JA, et al. Long-term in vivo survival of receptor-modified syngeneic T cells in patients with human immunodeficiency virus infection. Blood 2000; 96:467–474.

    CAS  PubMed  Google Scholar 

  22. Masiero S, Del Vecchio C, Gavioli R, Mattiuzzo G, Cusi MG, Micheli L, et al. T-cell engineering by a chimeric T-cell receptor with antibody-type specificity for the HIV-1 gp120. Gene Ther 2005;12:299–310.

    Article  CAS  PubMed  Google Scholar 

  23. Varela-Rohena A, Carpenito C, Perez EE, Richardson M, Parry RV, Milone M, et al. Genetic engineering of T cells for adoptive immunotherapy. Immunol Res 2008;42:166–81.

    Article  PubMed  Google Scholar 

  24. Bostik P, Noble ES, Stephenson ST, Villinger F, Ansari AA. CD4+ T cells from simian immunodeficiency virus disease-resistant sooty mangabeys produce more IL-2 than cells from disease-susceptible species: involvement of p300 and CREB at the proximal IL-2 promoter in IL-2 up-regulation. J Immunol 2007;178: 7720–7729.

    CAS  PubMed  Google Scholar 

  25. Marchetti G, Tincati C, Monforte A, Gori A. The challenge of IL-2 immunotherapy in HIV disease: “no through road” or turning point? Curr HIV Res 2008,6:189–199.

    Article  CAS  PubMed  Google Scholar 

  26. Poccia F, Gioia C, Martini F, Sacchi A, Piacentini P, Tempestilli M, et al. Zoledronic acid and interleukin-2 treatment improves immunocompetence in HIV-infected persons by activating Vgamma9Vdelta2 T cells. AIDS 2009; 23:555–565.

    Article  CAS  PubMed  Google Scholar 

  27. Leone A, Picker LJ, Sodora DL. IL-2, IL-7 and IL-15 as immuno-modulators during SIV/HIV vaccination and treatment. Curr HIV Res 2009;7:83–90.

    Article  CAS  PubMed  Google Scholar 

  28. Sportès C, Hakim FT, Memon SA, Zhang H, Chua KS, Brown MR, et al. Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med 2008;205:1701–1714.

    Article  PubMed  Google Scholar 

  29. Levy Y, Lacabaratz C, Weiss L, Viard JP, Goujard C, Lelievre JD, et al. Enhanced T cell recovery in HIV-1-infected adults through IL-7 treatment. J Clin Invest 2009;119:997–1007.

    CAS  PubMed  Google Scholar 

  30. Ahmad A, Ahmad R, Iannello A, Toma E, Morisset R, Sindhu ST. IL-15 and HIV infection: lessons for immunotherapy and vaccination. Curr HIV Res 2005;3:261–270.

    Article  CAS  PubMed  Google Scholar 

  31. Gracie JA, Robertson SE, McInnes IB. Interleukin-18. J Leucoc Bio 2003;73:213–224.

    Article  CAS  Google Scholar 

  32. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H. Interleukin-18 regulates both Th1 and Th2 responses. Ann Rev Immun 2001;19:423–474.

    Article  CAS  Google Scholar 

  33. Son YI, Dallal RM, Mailliard RB, Egawa S, Jonak ZL, Lotze MT. Interleukin-18 (IL-18) synergizes with IL-2 to enhance cytotoxicity, interferon-gamma production, and expansion of natural killer cells. Cancer Res 2001;61:884–888.

    CAS  PubMed  Google Scholar 

  34. Carroll RG, Carpenito C, Shan X, Danet-Desonyers G, Lin R, Jiang S, et al. Distinct effects of IL-18 on the engraftment and function of human effector CD8 T cells and regulatory T cells. PLoS ONE 2008;3:e3289.

    Article  PubMed  Google Scholar 

  35. Dhillon R, Rossi S, Herrine SK. Regulated interferon 2a and 2b in combination with ribavirin for the treatment of chronic hepatitis C in HIV infected patients. Ther Clin Risk Manag 2008;4:789–796.

    CAS  PubMed  Google Scholar 

  36. Tuma P, Vispo E, Barreiro P, Soriano V. Role of tenofovir in HIV and hepatitis C virus coinfection. Enferm Infec Microbiol Clin 2008;26:31–37.

    Article  Google Scholar 

  37. Adalid-Peralta L, Godot V, Colin C, Krzysiek R, Tran T, Poignard P, et al. Stimulation of the primary anti-HIV antibody response by IFN-α in patients with acute HIV-1 infection. J Leuk Biol 2008;83:1060–1067.

    Article  CAS  Google Scholar 

  38. Streeck H, Frahm N, Walker BD. The role of IFN-gamma Elispot assay in HIV vaccine research. Nat Protoc 2009;4:461–469

    Article  CAS  PubMed  Google Scholar 

  39. Sas AR, Bimonte-Nelson H, Smothers CT, Woodward J, Tyor WR. Interferon-alpha causes neuronal dysfunction in encephalitis. J Neurosci 2009;29:3948–3955.

    Article  CAS  PubMed  Google Scholar 

  40. Wang YW, Zhang HB, Shi YR, Wang W. Inhibition of Glycyrrhize Polysaccharide on virus. Acta Scientiarum Naturalium Universitatis Nankaiensis (Nat Sci Ed, Chin) 2001:127–129.

  41. LI TM, Liang ZF. Study on antiretroviral therapy of extractive and derivate of Radix Glycyrrhizae. Chin Tradit Herbal Drugs (Chin) 1994;25:655–656.

    Google Scholar 

  42. Zhou GY. Trichosanthin induced immune suppression participated by CD8. Shanghai J Immunol (Chin) 1990;10:1–2.

    Google Scholar 

  43. Zhang R. Clinical study on the effect of spica prunellae polysaccharide on inducing PBMC cytokines and cell apoptosis of HIV-1 infected individuals. J Henan Univ Chin Med (Chin) 2005;20:9–10.

    CAS  Google Scholar 

  44. Zhang WX, Hu QH, Liu H, Xie JY. Effects of Acanthopanax giralyii Polyose on immunity function. J Chin Med Mater (Chin) 1994; 17:36–38.

    Google Scholar 

  45. Li FZ, Xu LR, Li BL, He Y. Chinese medicine effect on subgroup of T lymphocyte of 173 cases of AIDS patients. J Tradit Chin Med (Chin) 2006;47:31–32.

    Google Scholar 

  46. Wang RB, Wang XJ, Wang YG. Clinical observation on treatment of AIDS within 38 cases using traditional Chinese herbs. Beijing J Tradit Chin Med (Chin) 2007; 26:9–11.

    Google Scholar 

  47. Wang J, Liu Y, Zou W, He YL, Yan SY, Yuan YH. Clinical observations on 100 HIV/AIDS cases treated with Chinese herb Aining Granule plus HAART. Chin J AIDS STD (Chin) 2008; 14:101–107.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li  (李 勇).

Additional information

Supported by the National Key Technologies Special-purpose Program (No. 2008ZX10005-004)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Lin, Hs., Liu, My. et al. Immune reconstitution of acquired immune deficiency syndrome. Chin. J. Integr. Med. 16, 557–564 (2010). https://doi.org/10.1007/s11655-010-0573-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-010-0573-2

Keywords

Navigation