Skip to main content
Log in

QTL detection for growth traits in Pinus elliottii var. elliottii and P. caribaea var. hondurensis

  • Research Article
  • Published:
Forest Science and Practice

Abstract

Quantitative trait locus (QTL) detection was carried out for growth traits in 122 F1 progenies of Pinus elliottii var. elliottii (PEE) × P. caribaea var. hondurensis (PCH) hybrid. The PCH male parent linkage map contained 108 markers in 16 linkage groups, while the PEE female parent contained 93 markers in 19 linkage groups. Sequence-related amplified polymorphism (SRAP), microsatellite (SSR), expressed sequence tag polymorphism (ESTP) and inter-simple sequence repeat (ISSR) were selected from an existing linkage map. Growth traits investigated were height at age five (HT05) and six years (HT06), diameter at breast height at age five (DBH05) and six years (DBH06) and annual growth from age five to six years of height (AGHT) and diameter at breast height (AGDBH). Kruskal-Wallis and interval mapping approaches were used to estimate levels of significance, the number of QTLs, the percentage of the phenotypic variation explained by each of QTLs and their positions on the genetic linkage maps. Twenty six QTLs with significance levels p < 0.05 were detected on the parental maps for the six growth traits, which explained more than 15% of the phenotypic variation, suggesting an existence of major-effect genes. Several QTLs had the pleiotropy controlling more than one single growth trait. Overall, the proportion of phenotypic variation explained by QTLs ranged from 5.9% to 40.6% for HT05 and HT06, from 6.6% to 42.0% for DBH05 and DBH06 and from 5.8% to 22.3% for AGHT and AGDBH. The results from this study provide a basis for marker-aided selection (MAS) in PEE × PCH hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auckland L, Bui T, Zhou Y, Shepherd M, Williams C. 2002. Conifer Microsatellite Handbook, Texas A&M, College station, Texas.

    Google Scholar 

  • Bradshaw HDJ, Otto KG, Frewen BE, McKay JK, Schemske DW. 1998. Quantitative trait loci affecting differences in floral morphology between two species of Monkey flower (Minulus). Genetics, 149(1): 367–382.

    PubMed  CAS  Google Scholar 

  • Bradshaw HDJ. 1993. Molecular genetics of growth and development in Populus. I. Triploidy in hybrid poplar. Theor Appl Genet, 86(2): 301–307.

    Google Scholar 

  • Byrne M, Murrell JC, Owen JV, Kriedemann P, Williams ER, Moran GF. 1997a. Identification and mode of action of quantitative trait loci affecting seedling height and leaf area in Eucalyptus nitens. Theor Appl Genet, 94(5): 674–681.

    Article  Google Scholar 

  • Byrne M, Murrell JC, Owen JV, Williams ER, Moran GF. 1997b. Mapping of quantitative trait loci influencing frost tolerance in Eucalyptus nitens. Theor Appl Genet, 95(5): 975–979.

    Article  CAS  Google Scholar 

  • Dale G. 1994. Genetic mapping in an interspecific hybrid between Pinus caribaea and Pinus elliottii. Dissertation. University of Queensland, Brisbane, Queensland, Australia.

    Google Scholar 

  • Devey M, Bell J, Moran G. 2001. A set of microsatellite markers for fingerprinting and breeding applications in Pinus radiate. Genome, 45(5): 984–989.

    Article  Google Scholar 

  • Devey ME, Carson SD, Nolan MF, Matheson AC, Te Riini C, Hohepa J. 2004. QTL association for density and diameter in Pinus radiata and the potential for matkeraided selection. Theor Appl Genet, 108(3): 516–524.

    Article  PubMed  CAS  Google Scholar 

  • Echt CS, De Verno LL, Anzidei M, Vendramin GG. 1998. Chloroplast microsatellite reveal population genetic diversity in redpine Pinus resinosa Ait. Molec Ecol, 65(7): 307–316.

    Article  Google Scholar 

  • Falconer DS. 1989. Introduction to Quantitative Genetics. Longman Scientific and Technical, Essex.

    Google Scholar 

  • Grattapaglia D, Bertolucci FL, Sederoff RR. 1995. Genetic mapping of QTLs controlling vegetative propagation in Eucalyptus grandis and E. urophylla using a pseudo-test cross strategy and RAPD markers. Theor Appl Genet, 90(7): 933–947.

    CAS  Google Scholar 

  • Grattapaglia D, Bertolucci FLG, Penchel R, Sederoff RR. 1996. Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. Genetics, 144(3): 1205–1214.

    PubMed  CAS  Google Scholar 

  • Groover A, Devey M, Fiddler T, Lee J, Megraw R, Mitchel-Olds T, Sherman B, Vujcic S, Williams C, Neale D. 1994. Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine. Genetics, 138(4): 1293–1300.

    PubMed  CAS  Google Scholar 

  • Kaya Z, Sewell MM, Neale DB. 1999. Identification of quantitative trait loci influencing annual height and diameter-increment growth in loblolly pine (Pinus taeda L.). Theor Appl Genet, 98: 586–592.

    Article  CAS  Google Scholar 

  • Nelson CD, Nance WL, Doudrick RL. 1993. A partial genetic linkage map of slash pine (Pinus ellittii Engelmann var. elliottii) based on random amplified polymorphic DNAs. Theor Appl Genet, 87(1): 145–151.

    CAS  Google Scholar 

  • van Ooijen JW, Boer MP, Jansen RC, Maliepaard C. 2002. MapQTL®4.0, software for the calculation of QTL positions on genetic mpas. Plant Research International, Wageninggen, Netherlands.

    Google Scholar 

  • Pelgas B, Bousquet J, Meirmans PG, Ritland K, Isabel N. 2011. QTL mapping in white spruce: gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments. BMC Genom, 12: 145. doi:10.1186/1471-2164-12-145.

    Article  Google Scholar 

  • Plomion C, Durel CE. 1996. Estimation of the average effects of specific alleles detected by the pseudotestcross QTL mapping strategy. Genet Select Evol, 28(3): 223–235.

    Article  Google Scholar 

  • Plomion C, Durel CE, O’Malley DM. 1996. Genetic dissection of height in maritime pine seedlings raised under accelerated growth conditions. Theor Appl Genet, 93(5): 849–858.

    Article  CAS  Google Scholar 

  • Pot D, Rodrigues JC, Rozenberg P, Chantre G, Tibbits J, Cahalan C, Pichavant F, Plomion C. 2006. QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait.). Tree Genet Genom, 2: 10–24.

    Article  Google Scholar 

  • SAS. 1997. SAS/STAT® software: changes and enhancements through release 6.12. SAS Institute Inc., Cary, NC.

    Google Scholar 

  • Shepherd M, Chaparro JX, Teasdale R. 1999. Genetic mapping of monoterpene composition in an interspecific eucalypt hybrid. Theor Appl Genet, 99(8): 1207–1215.

    Article  CAS  Google Scholar 

  • Shepherd M, Cross M, Dieters MJ, Henry R. 2002. Branch architecture QTL for Pinus elliottii var. elliottii × Pinus caribaea var. hondurensis hybrids. Ann For Sci, 59(5): 617–625.

    Article  Google Scholar 

  • Shepherd M, Cross M, Dieters MJ, Henry R. 2003. Genetic maps for Pinus elliottii var. elliottii and P. caribaea var. hondurensis using AFLP and microsatellite markers. Theor Appl Genet, 106(8): 1409–1419.

    PubMed  CAS  Google Scholar 

  • Shepherd M, Cross M, Eggler P, Henry R. 2004. The collective pine genome is characterised by synteny, paralogy and recombination shrinkage. Molec Ecol, 66(2): 102–105.

    Google Scholar 

  • Tanksley S. 1993. Mapping polygenes. Ann Rev Genet, 27(6): 205–233.

    Article  PubMed  CAS  Google Scholar 

  • Thamarus KA, Groom K, Merrell J, Byrne M, Moran GF. 2002. A genetic linkage map for Eucalyptus globules with candidate loci for wood, fibre, and floral traits. Theor Appl Genet, 104(2): 379–387.

    Article  PubMed  CAS  Google Scholar 

  • Thumma BR, Southerton SG, Bell JC, Owen JV, Henery ML, Moran GF. 2010. Quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens. Tree Genet Genom, 6: 305–317.

    Article  Google Scholar 

  • Ukrainetz NK, Ritland K, Mansfield SD. 2008. Identification of quantitative trait loci for wood quality and growth across eight full-sib coastal Douglas-fir families. Tree Genet Genom, 4: 159–170.

    Article  Google Scholar 

  • Voorrips RE. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered, 93: 77–78.

    Article  PubMed  CAS  Google Scholar 

  • Yang HX, Luo R, Zhao FC, Liu TY, Liu CX, Huang SW. 2013. Constructing genetic linkage maps for Pinus elliottii var. elliottii and Pinus caribaea var. hondurensis using SRAP, SSR, EST and ISSR markers. Trees-Struct Funct. In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Wei Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, HX., Liu, TY., Liu, CX. et al. QTL detection for growth traits in Pinus elliottii var. elliottii and P. caribaea var. hondurensis . For. Sci. Pract. 15, 196–205 (2013). https://doi.org/10.1007/s11632-013-0306-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11632-013-0306-7

Keywords

Navigation