Skip to main content
Log in

DNA methylation as a key process in regulation of organogenic totipotency and plant neoplastic progression?

  • Cell Biology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Progressive loss of organogenic totipotency appears to be a common event in long-term plant tissue culture. This loss of totipotency, which has been proposed to be a typical trait of plant neoplastic progression, is compared to some mechanisms that occur during the establishment of animal differentiation-resistant cancer lines in vitro. Evidence is presented that alteration in DNA methylation patterns and expression of genes occur during long-term callus culture. An effect of the auxin, 2,4-dichlorophenoxyacetic acid, in the progressive methylation, is moreover suggested. Methylation of genes relevant to cell differentiation and progressive elimination of cells capable of differentiation is proposed as being responsible for this progressive loss of organogenic potential. Finally, the epigenetic alteration (DNA methylation) that occurs during prolonged periods of culture may induce other irreversible genetic alterations that ultimately make the loss of totipotency irreversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amasino, R. M.; Powell, A. L. T.; Gordon, M. P. Changes in T-DNA methylation and expression are associated with phenotypic variation and plant regeneration in a crown gall tumor line. Mol. & Gen. Genet. 197:437–446; 1984.

    Article  CAS  Google Scholar 

  • Antequera, F.; Boyes, J.; Bird, A. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62:503–514; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Aribaud, M.; Carré, M.; Martin-Tanguy, J. Polyamine metabolism and in vitro cell multiplication and differentiation in leaf explants of Chrysanthemum morifolium Ramat. Plant Growth Regul. 15:143–155; 1994.

    Article  CAS  Google Scholar 

  • Attadia, M. Effects of 5-aza-2′-deoxycytidine on differentiation and oncogene expression in the human monoblastic leukemia cell line U-937. Leukemia 7 Suppl. 1:9–16; 1993.

    Google Scholar 

  • Ball, D. J.; Gross, D. S.; Garrard, W. T. 5-Methylcytosine is localized in nucleosomes that contain histone H1. Proc. Natl. Acad. Sci. USA 80:5490–5494; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Bastola, D. R.; Minocha, S. C. Increased putrescine biosynthesis through transfer of mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis. Plant Physiol. 109:63–71; 1995.

    PubMed  CAS  Google Scholar 

  • Bednar, T. W.; Linsmaier-Bednar, E. M. Induction of cytokinin-independent tobacco tissues by substituted fluorenes. Proc. Natl. Acad. Sci. USA 68:1178–1179; 1971.

    Article  PubMed  CAS  Google Scholar 

  • Bestor, T. H.; Helewell, S. B.; Ingram, V. M. Differentiation of two mouse cell lines is associated with hypomethylation of their genomes. Mol. Cell. Biol. 4:1800–1806; 1984.

    PubMed  CAS  Google Scholar 

  • Bhaskaran, S.; Smith, R. H. Regeneration in cereal tissue culture: a review. Crop Sci. 30:1328–1337; 1990.

    Article  CAS  Google Scholar 

  • Bianchi, M. W.; Viotti, A. DNA methylation and tissue-specific transcription of the storage protein genes of maize. Plant Mol. Biol. 11:203–214; 1988.

    Article  CAS  Google Scholar 

  • Braun, A. C. Plant tumors. Biochim. Biophys. Acta 516:167–191; 1978.

    PubMed  CAS  Google Scholar 

  • Brettel, R. I. S.; Dennis, E. S.; Scowcroft, W. R., et al. Molecular analysis of a somaclonal variant of alcohol dehydrogenase. Mol. & Gen. Genet. 202:335–344; 1986.

    Google Scholar 

  • Brown, P. T. H. DNA methylation in plants and its role in tissue culture. Genome 31:717–729; 1989.

    CAS  Google Scholar 

  • Buckley, J. D. The aetiology of cancer in the very young. Br. J. Cancer 66:S8-S12; 1992.

    Google Scholar 

  • Burbelo, P. D.; Horikoshi, S.; Yamada, Y. DNA methylation and collagen IV gene expression in F9 teratocarcinoma cells. J. Biol. Chem. 265:4839–4843; 1990.

    PubMed  CAS  Google Scholar 

  • Cedar, H.; Razin, A. DNA methylation and development. Biochim. Biophys. Acta 1049:1–8; 1990.

    PubMed  CAS  Google Scholar 

  • Christman, J. K.; Price, P.; Pedrinan, L., et al. Correlation between hypomethylation of DNA and expression of globin genes in Friend erythroleukemia cells. Eur. J. Biochem. 81:53–61; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Christman, J. K.; Weich, N.; Schoenbrum, B., et al. Hypomethylation of DNA during differentiation of Friend erythroleukemia cells. J. Cell. Biol. 86:366–370; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Compere, S. J.; Palmiter, R. D. DNA methylation controls the inducibility of the mouse metallothionein-1 gene in lymphoid cells. Cell 25:233–240; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, D. N.; Krawczak, M. Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum. Genet. 83:181–188; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Crèvecoeur, M.; Kevers, C.; Greppin, H., et al. A comparative biochemical and cytological characterization of normal and habituated sugarbeet calli. Biol. Plant. 29:1–6; 1987.

    Google Scholar 

  • Delers, A.; Szpirer, J.; Szpirer, C., et al. Spontaneous and 5-azacytidine-induced reexpression of ornithine carbamyltransferase in hepatoma cells. Mol. Cell. Biol. 4:809–812; 1984.

    PubMed  CAS  Google Scholar 

  • El-Deiry, W. S.; Nelkin, B. D.; Celano, P., et al. High expression of the DNA methyltransferase gene characterizes human neoplastic cells and progression stages of colon cancer. Proc. Natl. Acad. Sci. USA 88:3470–3474; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Feirer, R. P.; Mignon, G.; Litvay, J. D. Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot. Science 223:1433–1435; 1984.

    Article  CAS  PubMed  Google Scholar 

  • Fienberg, A. A.; Choi, J. H.; Lubich, W. P., et al. Developmental regulation of polyamine metabolism in growth and differentiation of carrot culture. Planta 162:532–539; 1984.

    Article  CAS  Google Scholar 

  • Flavell, R. B.; O’Dell, M.; Thompson, W. F. Regulation of cytosine methylation in ribosomal DNA and nucleolus organizer expression in wheat. J. Mol. Biol. 204:523–534; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Floh, E. I.; Handro, W. Variation of histological patterns in tobacco callus during successive subcultures. Can. J. Bot. 63:1794–1800; 1985.

    Google Scholar 

  • Fransz, P. F.; Schel, J. H. N. Cytodifferentiation during the development of friable embryogenic callus of maize (Zea mays). Can. J. Bot. 69:26–33; 1990.

    Google Scholar 

  • Gaspar, Th. The concept of cancer in in vitro plant cultures and the implication of habituation to hormones and hyperhydricity. Plant Tissue Cult. Biotech. 1:126–136; 1995.

    Google Scholar 

  • Gaspar, T.; Hagège, D.; Kevers, C., et al. When plant teratomas turn into cancers in the absence of pathogens. Physiol. Plant. 83:696–701; 1991.

    Article  Google Scholar 

  • Gautheret, R. J. Hétéro-auxines et cultures de tissus végétaux. Bull. Soc. Chim. Biol. 24:13–41; 1942.

    CAS  Google Scholar 

  • Grisvard, J. Different methylation pattern of melon satellite DNA sequences in hypocotyl and callus tissues. Plant Sci. 39:189–193; 1985.

    Article  CAS  Google Scholar 

  • Gruenbaum, Y.; Naveh-Many, T.; Cedar, H., et al. Sequence specificity of methylation in higher plants DNA. Nature 292:860–862; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Guevara-Olvera, L.; Calvo-Mendez, C.; Ruiz-Herrera, J. The role of polyamine metabolism in dimorphism of Yarrowia lipolytica. J. Gen. Microbiol. 139:485–493; 1993.

    PubMed  CAS  Google Scholar 

  • Hagège, D.; Catania, R.; Micalef, H., et al. Nuclear shape and DNA content of fully habituated nonorganogenic sugarbeet callus. Protoplasma 166:49–54; 1992.

    Article  Google Scholar 

  • Harris, M. Induction of thymidine kinase in enzyme-deficient Chinese hamster cells. Cell 29:483–492; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Harris, M. High frequency induction by 5-azacytidine of proline independence in CHO-Kl cells. Somatic Cell Mol. Genet. 10:615–624; 1984a.

    Article  PubMed  CAS  Google Scholar 

  • Harris, M. Variants inducible for glutamine synthetase in V79-56 cells. Somatic Cell Mol. Genet. 10:275–281; 1984b.

    Article  PubMed  CAS  Google Scholar 

  • Harris, M. Induction and reversion of asparagine auxotrophs in CHO-Kl and V79 cells. Somatic Cell Mol. Genet. 12:459–466; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Hepburn, A. G.; Belanger, F. C.; Mattheis, J. R. DNA methylation in plants. Dev. Genet. 8:475–493; 1987.

    Article  CAS  Google Scholar 

  • Hervagult, J. F.; Ortoleva, P.; Ross, J. Reversal of the crown gall tumor: an interpretation based on multiple steady states. Proc. Natl. Acad. Sci. USA 88:10787–10800; 1991.

    Google Scholar 

  • Hickey, I.; Jones, S.; O’Neill, K. Azacytidine induces reversion of thymidine kinase deficiency in Friend erythroleukemia cells. Exp. Cell. Res. 164:251–255; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Holliday, R. The inheritance of epigenetic defects. Science 238:163–169; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Holliday, R. Mutations and epimutations in mammalian cells. Mutat. Res. 250:351–363; 1991.

    PubMed  CAS  Google Scholar 

  • Ivarie, R. D.; Morris, J. A. Induction of prolactin deficient variants of GH3 rat pituitary cells by ethyl-methene sulphonate: reversion by 5-azacytidine, a DNA methylation inhibitor. Proc. Natl. Acad. Sci. USA 79:2967–2970; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Jones, P. A.; Wolkowicz, M. J.; Rideout, W. M., et al. De novo methylation of the myoD CpG island during the establishment of immortal cell lines. Proc. Natl. Acad. Sci. USA 87:6117–6121; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Kaeppler, S. M.; Phillips, R. L. DNA methylation and tissue culture-induced variation in plants. In Vitro Cell. Dev. Biol. 29P:125–130; 1993.

    CAS  Google Scholar 

  • Karp, A. Are your plants normal? Genetic instability in regenerated and transgenic plants. Agro-Food-Industry Hi-Tech. May 93:7–12.

  • Keshet, I.; Lieman-Hurwitz, J.; Cedar, H. DNA methylation affects the formation of active chromatin. Cell 44:535–543; 1986.

    Article  PubMed  CAS  Google Scholar 

  • King, P. J.; Potrykus, I.; Thomas, E. In vitro genetics of cereals: problem and perspectives. Physiol. Veg. 16:381–399; 1978.

    Google Scholar 

  • Kishor, P. B. K.; Dhar, A. C.; Naidu, K. R. Plant regeneration in tissue cultures of some millets. Indian J. Exp. Bot. 30:729–733; 1982.

    Google Scholar 

  • Lambé, P. Etude de l’intégration, de l’expression, de la stabilité de transgènes introduits par bombardement de microprojectiles et de la régénération de plantes transgéniques chez une céréale, le Mil pénicillaire (Pennisetum glaucum). Université de Liège, Liège, Belgium; 1995. PhD Thesis.

    Google Scholar 

  • Lambé, P.; Dinant, M.; Matagne, R. F. Differential long-term expression and methylation of the hygromycin phosphotransferase (hph) and β-glucuronidase (GUS) genes in transgenic pearl millet (Pennisetum glaucum) callus. Plant Sci. 108:51–62; 1995.

    Article  Google Scholar 

  • Le Dily, F.; Billard, J. P.; Gaspar, Th., et al. Disturbed nitrogen metabolism associated with the hyperhydric status of fully habituated callus of sugarbeet. Physiol. Plant. 88:129–134; 1993.

    Article  Google Scholar 

  • Lee, M.; Phillips, R. L. The chromosomal basis of somaclonal variation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:413–437; 1988.

    Article  Google Scholar 

  • Liners, F.; Gaspar, Th.; Van Cutsem, P. Acetyl- and methyl-esterification of pectins of friable and compact sugarbeet calli: consequences for intercellular adhesion. Planta 192:545–556; 1994.

    Article  CAS  Google Scholar 

  • Linn, F.; Heidmann, I.; Saedler, H., et al. Epigenetic changes in the expression of maize Al gene in Petunia hybrida: role of numbers of integrated gene copies and state of methylation. Mol. & Gen. Genet. 222:329–336; 1990.

    Article  CAS  Google Scholar 

  • Liteplo, R. G.; Frost, P.; Kerbel, R. S. 5-Azacytidine induction of thymidine kinase in a spontaneously enzyme-deficient murine tumor line. Exp. Cell Res. 150:499–504; 1984.

    Article  PubMed  CAS  Google Scholar 

  • LoSchiavo, F.; Pitto, L.; Giuliano, G., et al. DNA methylation of embryogenic carrot cell cultures and its variation as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor. Appl. Genet. 77:325–331; 1989.

    Article  CAS  Google Scholar 

  • Mann, V.; Szyf, M.; Razin, A. Characterization of a tumorigenic murine T lymphoid cell line spontaneously derived from an IL2 dependent T cell line. Int. J. Cancer 37:781–786; 1985.

    Article  Google Scholar 

  • Martin-Tanguy, J.; Carré, M. Polyamines in grapevine microcuttings cultivated in vitro. Effects of amines and inhibitors of polyamine biosynthesis on polyamine levels and microcutting growth and development. Plant Growth Regul. 13:269–280; 1993.

    Article  CAS  Google Scholar 

  • Mazur, B. J.; Chui, C. F.; Smith, J. K. Isolation and characterization of plant genes coding for acetolactate synthase, the target enzyme for two classes of herbicides. Plant Physiol. 85:1110–1117; 1987.

    PubMed  CAS  Google Scholar 

  • Meins, F. Habituation: heritable variation in the requirement of cultured plant cells for hormones. Annu. Rev. Genet. 23:395–408; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Mengoli, M.; Bagni, N.; Luccarini, G., et al. Daucus carota cell cultures: polyamines and effect of polyamine biosynthesis inhibitors in the preembryogenic phase and different embryo stages. J. Plant Physiol. 134:389–394; 1989.

    CAS  Google Scholar 

  • Montague, M. J.; Armstrong, T. A.; Jaworski, E. G. Polyamine metabolism in embryogenic cells of Daucus carota. II. Changes in arginine decarboxylase activity. Plant Physiol. 63:341–345; 1979.

    PubMed  CAS  Google Scholar 

  • Morrish, F. M.; Vasil, I. K. DNA methylation and embryogenic competence in leaves and callus of Napiergrass (Pennisetum purpureum). Plant Physiol. 90:37–40; 1989.

    PubMed  CAS  Google Scholar 

  • Mott, R. L.; Cure, W. W. Anatomy of maize tissue cultures. Physiol. Plant. 42:139–145; 1978.

    Article  Google Scholar 

  • Nakamura, N.; Okada, S. Mutations resistant to bromodeoxyuridine in mouse lymphoma cells selected by repeated exposure to EMS. Characteristics of phenotypic instability and reversion to HAT resistance by 5-azacytidine. Mutat. Res. 111:353–364; 1983.

    PubMed  CAS  Google Scholar 

  • Ngernprasirtsiri, J.; Chollet, R.; Kobayashi, H., et al. DNA methylation and the differential expression of C4 photosynthesis genes in mesophyll and bundle sheath cells of greening maize leaves. J. Biol. Chem. 264:8241–8248; 1989.

    PubMed  CAS  Google Scholar 

  • Nigro, J. M.; Baker, S. J.; Preisinger, A. C., et al. Mutations in the p53 gene occur in diverse human tumour types. Nature 342:705–708; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Ottaviani, M.-P.; Smits, T.; Hänisch ten Cate, C. H. Differential methylation and expression of the β-glucuronidase and neomycin phosphotransferase genes in transgenic plants of potato cv. Bintje. Plant Sci. 88:73–81; 1993.

    Article  CAS  Google Scholar 

  • Palmgren, G.; Mattson, O.; Okkels, F. T. Specific levels of DNA methylation in various tissues, cell lines, and cell types of Daucus carota. Plant Physiol. 95:174–178; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Pavlica, M.; Papes, D.; Nagy, B. 2,4-Dichlorophenoxyacetic acid causes chromatin and chromosome abnormalities in plant cells and mutation in cultured mammalian cells. Mutat. Res. 263:77–81; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Pengelly, W. L. Neoplastic progression in plants. In: Kaiser, H. E., eds. Comparative aspects of tumor development. Dordrecht, Netherlands: Kluwer Academic Publishers; 1989:15–23.

    Google Scholar 

  • Phillips, R. L.; Kaeppler, S. M.; Olhoft, P. Genetic instability of plant tissue cultures: breakdown of normal controls. Proc. Natl. Acad. Sci. USA 91:5222–5226; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Quemada, H.; Roth, E. J.; Lark, K. G. Changes in methylation of tissue cultured soybean cells detected by digestion with restriction enzymes HapII and MspI. Plant Cell Rep. 6:63–66: 1987.

    Article  CAS  Google Scholar 

  • Razin, A.; Cedar, H. DNA methylation and gene expression. Microbiol. Rev. 55:451–458; 1991.

    PubMed  CAS  Google Scholar 

  • Rideout, W. M.; Coetzee, G. A.; Olumi, A. F., et al. 5-methylcytosine as an endogenous mutagen in the human LDL receptor and p53 gene. Science 249:1288–1290; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Rideout, W. M.; Eversole-Cire, P.; Spruck, C. H., III, et al. Progressive increases in the methylation status and heterochromatinization of the myoD CpG island during oncogenic transformation. Mol. Cell. Biol. 14:6143–6152; 1994.

    PubMed  CAS  Google Scholar 

  • Ruiz-Herrera, J. Polyamines, DNA methylation, and fungal differentiation. Crit. Rev. Microbiol. 20:143–150; 1994.

    PubMed  CAS  Google Scholar 

  • Shorderet, D. F.; Keitzer, E. A.; Dubois, P. M., et al. Inactivation and reactivation of sex-linked steroid sulfatase gene in murine cell culture. Somatic Cell Mol. Genet. 14:113–121; 1988.

    Article  Google Scholar 

  • Speranza, A.; Bagni, N. Putrescine biosynthesis in Agrobacterium tumefaciens and in normal and crown gall tissues of Scorzonera hispanica L. Z. Pflanzenphysiol. 81:226–233; 1977.

    CAS  Google Scholar 

  • Stallings, R. L.; Crawford, B. D.; Tobey, R. B., et al. 5-Azacytidine-induced conversion to cadmium resistance correlates with early S phase replication of inactive metallothionein genes in synchronized CHO cells. Somatic Cell Mol. Genet. 12:423–432; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Steglich, C.; Grens, A.; Scheffer, I. E. Chinese hamster cells deficient in ornithine decarboxylase activity: reversion by gene amplification and by azacytidine treatment. Somatic Cell Mol. Genet. 11:11–23; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, R. H.; Arfin, S. M.; Harris, M. Properties of asparagine synthetase in asparagine-independent variants of Jensen rat sarcoma cells induced by 5-azacytidine. Mol. Cell. Biol. 3:1937–1942; 1983.

    PubMed  CAS  Google Scholar 

  • Syono, K.; Fujita. T. Habituation as a tumorous state that is interchangeable with a normal state in plant cells. Int. Rev. Cytol. 152:265–299; 1994.

    Article  Google Scholar 

  • Vasil, I. K. Developing cell and tissue culture system for the improvement of cereal and grass crops. J. Plant Physiol. 128:193–218; 1987.

    Google Scholar 

  • Vasil, V.; Vasil, I. K. Somatic embryogenesis and plant regeneration from tissue cultures of Pennisetum americanum and P. americanum × P. purpureum hybrid. Am. J. Bot. 68:864–872; 1981.

    Article  Google Scholar 

  • Vergara, R.; Verde, F.; Pitto, L., et al. Reversible variations in the methylation pattern of carrot DNA during somatic embryogenesis. Plant Cell Rep. 8:697–700; 1990.

    Article  CAS  Google Scholar 

  • Wagner, I.; Capesius, I. Determination of 5-methylcytosine from plant DNA by high-performance liquid chromatography. Biochim. Biophys. Acta 654:52–56; 1981.

    PubMed  CAS  Google Scholar 

  • Watson, J. C.; Kaufman, L. S.; Thompson, W. F. Developmental regulation of cytosine methylation in the nuclear ribosomal RNA genes of Pisum sativum. J. Mol. Biol. 193:15–26; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, V. L.; Jones, P. A. DNA methylation decreases in aging but not in immortal cells. Science 220:1055–1057; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Wise, T. L.; Harris, M. Deletion and hypermethylation of thymidine kinase in V79 cells resistant to bromodeoxyuridine. Somatic Cell Mol. Genet. 14:567–581; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Yeoman, M. M.; Street, H. E. General cytology of cultured cells. In: Street, H. E., ed. Plant tissue and cell culture. Oxford: Blackwell Scientific Publishers; 1977:137–176.

    Google Scholar 

  • Ziauddin, A.; Kasha, K. J. Long-term callus cultures of diploid barley (Hordeum vulgare). II. Effect of auxins on chromosomal status of cultures and regeneration of plants. Euphytica 48:279–286; 1990.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambé, P., Mutambel, H.S.N., Fouché, JG. et al. DNA methylation as a key process in regulation of organogenic totipotency and plant neoplastic progression?. In Vitro Cell.Dev.Biol.-Plant 33, 155–162 (1997). https://doi.org/10.1007/s11627-997-0015-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-997-0015-9

Key words

Navigation