Skip to main content
Log in

Inactivation and reactivation of sex-linked steroid sulfatase gene in murine cell culture

  • Published:
Somatic Cell and Molecular Genetics

Abstract

The murine X-linked steroid sulfatase gene (Sts) normally escapes X inactivation. However, we have observed that most long-term murine cell cultures are deficient in STS activity even though only the L cells are known to be derived from an STS mouse strain. To investigate this phenomenon, we developed a selective system whereby STS+ cells could be selected from STS populations. The system is based on making cells dependent on cholesterol-sulfate as the sole source of cholesterol, allowing only STS+ cells to grow. Two STS cell lines, after treatment with either 5-azacytidine (5AC) or ethyl methane sulfonate (EMS), yielded STS+ revertants, suggesting that their STS phenotype was due to hyper-methylation. To study the evolution of STS cell lines, we established XO and XX primary lines from STS+ strains; the XX cell line remained STS+ after more than 200 cell doublings whereas the XO became STS after about 100 doublings. Treatment of this STSXO cell line with 5AC produced clones with restored STS activity. All the revertants showed a growth disadvantage compared to their STS counterparts. It would appear that aberrant methylation is the basis for much of the STS deficiency observed in established murine lines and that its propagation is due to the growth advantage of STS over STS+ cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Keitges, E.A., Rivest, M., Siniscalco, M., and Gartler, S.M. (1985).Nature 315:226–227.

    PubMed  Google Scholar 

  2. Keitges, E.A., Schorderet, D.F., and Gartler, S.M. (1987).Genetics 116:465–468.

    PubMed  Google Scholar 

  3. Soriano, P., Keitges, E.A., Schorderet, D.F., Harbers, K., Gartler, S.M., and Jaenisch, R. (1987).Proc. Natl. Acad. Sci. U.S.A. 84:7218–7220.

    PubMed  Google Scholar 

  4. Tiepolo, L., Zuffardi, O., Fraccaro, M., Di Natale, D., Gargantini, L., Muller, C.R., and Ropers, H.H. (1980).Hum. Genet. 54:205–206.

    PubMed  Google Scholar 

  5. Curry, C.J.R., Magenis, R.E., Brown, M., Lanman, J.T., Tsai, J., O'Lague, P., Goodfellow, P., Mohandas, T., Bergner, E.A., and Shapiro, L.J. (1984).N. Engl. J. Med. 311:1010–1015.

    PubMed  Google Scholar 

  6. Muller, C.R., Migl, B., Traupe, H., and Ropers, H.H. (1980).Hum. Genet. 54:197–199.

    PubMed  Google Scholar 

  7. Migeon, B.R., Shapiro, L.J., Norum, R.A., Mohandas, T., Axelman, J., and Dabora, R.L. (1982).Nature 299:838–840.

    PubMed  Google Scholar 

  8. Mohandas, T., Sparkes, R.S., Hellkuhl, B., Grzeschik, K.H., and Shapiro, L.J. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:6759–6763.

    PubMed  Google Scholar 

  9. Mosley, S.T., Brown, M.S., Anderson, R.G.W., and Goldstein, J.L. (1983).J. Biol. Chem. 258:13875–13881.

    PubMed  Google Scholar 

  10. Chance P.F., and Gartler, S.M. (1983).Am. J. Hum. Genet. 35:234–240.

    PubMed  Google Scholar 

  11. Balazs, I., Purrello, M., Rocchi, M., Rinaldi, A., and Siniscalco, M. (1982).Cytogenet. Cell Genet. 32:251–252.

    Google Scholar 

  12. Goldstein, J.L., Basu, S.K., and Brown, M.S. (1983).Methods Enzymol. 98:241–260.

    PubMed  Google Scholar 

  13. Endo, E., Kuroda, M., and Tsujita, Y. (1976).J. Antibiol. 29:1346–1348.

    Google Scholar 

  14. Alberts, A.W., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., Rothrock, J., Lopez, M., Joshua, H., Harris, E., Patchett, A., Monaghan, R., Currie, S., Stapley, E., Albers-Schonberg, G., Hensens, O., Hirschfield, J., Hoogsteen, K., Liesch, J., and Springer, J. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:3957–3961.

    PubMed  Google Scholar 

  15. Radding, C.M., and Steinberg, D. (1960).J. Clin. Invest. 39:1560–1569.

    PubMed  Google Scholar 

  16. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951).J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  17. Farber, R.A., and Liskay, R.M. (1974).Cell Genet. 13:384–396.

    PubMed  Google Scholar 

  18. Latt, S.A., Willard, H.F., and Gerald, P.S. (1976).Chromosoma 57:135–153.

    PubMed  Google Scholar 

  19. Harris, M. (1984).Somat. Cell Mol. Genet. 10:615–624.

    PubMed  Google Scholar 

  20. Ballabio, A., Parenti, G., Carrozzo, R., Sebastio, B., Andria, G., Buckle, V., Fraser, N., Craig, I., Rocchi, M., Romeo, G., Jobsis, A.C., and Persico, M.G. (1987).Proc. Natl. Acad. Sci. U.S.A. 84:4519–4523.

    PubMed  Google Scholar 

  21. Gillard, E.F., Affara, N.A., Yates, J.R.W., Goudie, D.R., Lambert, J., Aitken, D.A., and Ferguson-Smith, M.A. (1987).Nucleic Acids Res. 15:3977–3985.

    PubMed  Google Scholar 

  22. Yen, P.H., Allen, E., Marsh, B., Mohandas, T., Wang, N., Taggart, R.T., and Shapiro, L.J. (1987).Cell 49:443–454.

    PubMed  Google Scholar 

  23. Lyon, M.F. (1961).Nature 190:372–373.

    PubMed  Google Scholar 

  24. Cattanach, B.M., Pollard, C.E., and Hawkes, S.G. (1971).Cytogenetics 10:318–337.

    PubMed  Google Scholar 

  25. McLaren, A., and Monk, M. (1982).Nature 300:446–448.

    PubMed  Google Scholar 

  26. Kratzer, P.G., Chapman, M.M., Lambert, H., Evans, R., and Liskay, R.M. (1983).Cell 33:37–42.

    PubMed  Google Scholar 

  27. Lock, L.F., Takagi, N., and Martin, G.R. (1987).Cell 48:39–46.

    PubMed  Google Scholar 

  28. Gartler, S.M., Dyer, K.A., Graves, J.A.M., and Rocchi, M. (1985). InBiochemistry and Biology of DNA Methylation, (eds.) Cantoni, G.L., and Razin, A. (Alan R. Liss, New York), pp. 223–235.

    Google Scholar 

  29. Harris, M. (1982).Cell 29:483–492.

    PubMed  Google Scholar 

  30. Harris, M. (1984).Somat. Cell Genet. 10:275–287.

    Google Scholar 

  31. Steglich, C., Grens, A., and Scheffler, I.E. (1985).Somat. Cell Mol. Genet. 11:11–23.

    PubMed  Google Scholar 

  32. Harris, M. (1986).Somat. Cell Mol. Genet. 12:459–466.

    PubMed  Google Scholar 

  33. Gey, G.O., Coffman, W.D., and Kubicek, M.T. (1952).Cancer Res. 12:264–265.

    Google Scholar 

  34. Warner, N.L., Harris, A.W., and Gutman, G.A. (1975). InMembrane Receptors of Lymphocytes, (eds.) Seligmann, M., Preud'homme, J.L., and Kourilsky, F.M. (North-Holland, Amsterdam), p. 203.

    Google Scholar 

  35. Bradley, A., Evans, M., Kaufman, M.H., and Robertson, E. (1984).Nature 309:255–256.

    PubMed  Google Scholar 

  36. McBurney, M.W., and Rogers, B.J. (1982).Dev. Biol. 89:503–508.

    PubMed  Google Scholar 

  37. Martin, G.R. and Evans, M.J. (1975).Cell 6:467–474.

    Google Scholar 

  38. Oi, V.T., Morrisson, S.L., Herzenberg, L.A., and Berg, P. (1983).Proc. Natl. Acad. Sci. U.S.A. 80:825–829.

    PubMed  Google Scholar 

  39. Jainchill, J.L., Aaronson, S.A., and Todaro, G.J. (1969).J. Virol. 4:549–553.

    PubMed  Google Scholar 

  40. Paige, C.J., Kinkade, P.W., and Ralph, P. (1978).J. Immunol. 121:641–647.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schorderet, D.F., Keitges, E.A., Dubois, P.M. et al. Inactivation and reactivation of sex-linked steroid sulfatase gene in murine cell culture. Somat Cell Mol Genet 14, 113–121 (1988). https://doi.org/10.1007/BF01534396

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534396

Keywords

Navigation