Skip to main content
Log in

Chinese hamster cells deficient in ornithine decarboxylase activity: Reversion by gene amplification and by azacytidine treatment

  • Published:
Somatic Cell and Molecular Genetics

Abstract

A group of Chinese hamster ovary (CHO) cell mutants deficient in ornithine decarboxylase (ODC) activity are described and compared to the prototype mutant reported previously (21). Although all mutants belong to the same complementation group, they can be divided into two classes: those with some residual enzyme activity and those with no activity. All mutants are putrescine auxotrophs, but they differ in their ability to utilize the enzyme's substrate, ornithine, a property which correlates with the amount of residual enzyme activity. The mutants also differ in their frequency of reversion to prototrophy. The leaky mutants revert at a high rate by overproducing a partially defective enzyme by a gene amplification mechanism similar to that leading to the ornithine analog-resistant mutants which have elevated enzyme levels. Spontaneous reversion in the null mutants is rare. However, one null mutant, which was induced with ethyl methane sulfonate and which makes ODC mRNA but no active enzyme, is nevertheless revertible with 5-azacytidine. We conclude that CHO cells are at least diploid at the ODC locus, but that only one allele is active. Further studies suggest the possibility that ethyl methane sulfonate is not just a classical mutagen but may also induce gene inactivations that are revertible by 5-azacytidine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Bachrach, U. (1981). InPolyamines in Biomedical Research, (ed.) Gaugas, J.M., (John Wiley and Sons, New York), pp. 81–107.

    Google Scholar 

  2. Canellakis, E.S., Viceps-Madore, D., Kyriakidis, D.A., and Heller, J.S. (1979). InCurrent Topics in Cellular Regulation, (eds.) Horecker, B.L., and Stadtman, E.R. (Academic Press, New York), pp. 155–202.

    Google Scholar 

  3. Pegg, A.E., and McCann, P.P. (1982).Am. J. Physiol. 243:c212-c221.

    PubMed  Google Scholar 

  4. Scalabrino, G., and Ferioli, M.E. (1981).Adv. Cancer Res. 35:151–268.

    PubMed  Google Scholar 

  5. Tabor, C.W., and Tabor, H. (1976).Annu. Rev. Biochem. 45:285–306.

    PubMed  Google Scholar 

  6. Hafner, E.W., Tabor, C.W., and Tabor, H. (1979).J. Biol. Chem. 254:12419–12426.

    PubMed  Google Scholar 

  7. Tabor, H., Hafner, E.W., and Tabor, C.W. (1980).J. Bacteriol. 144:952–956.

    PubMed  Google Scholar 

  8. Tabor, H., Tabor, C.W., Cohn, M.S., and Hafner, E.W. (1981).J. Bacteriol. 147:702–704.

    PubMed  Google Scholar 

  9. Cohn, M.S., Tabor, C.W., and Tabor, H. (1978).J. Bacteriol. 134:208–213.

    PubMed  Google Scholar 

  10. Cohn, M.S., Tabor, C.W., and Tabor, H. (1980).J. Bacteriol. 142:791–799.

    PubMed  Google Scholar 

  11. Whitney, P.A., and Morris, D.R. (1978).J. Bacteriol. 134:214–220.

    PubMed  Google Scholar 

  12. Paulus, T.J., and Davis, R.H. (1981).J. Bacteriol. 145:14–20.

    PubMed  Google Scholar 

  13. Paulus, T.J., Kujino, P., and Davis, R.H. (1982).J. Bacteriol. 152:291–297.

    PubMed  Google Scholar 

  14. Abraham, A.K., and Pihl, A. (1981).Trends Biochem. Sci. 6:106–107.

    Google Scholar 

  15. Algranati, I.D., and Goldenberg, S.H. (1981).Biochem. Biophys. Res. Commun. 103:8–15.

    PubMed  Google Scholar 

  16. Sakai, T.T., and Cohen, S.S. (1976).Prog. Nucleic Acid Res. Mol. Biol. 17:15–42.

    PubMed  Google Scholar 

  17. Höltta, E., and Pohjanpelto, P. (1982).Biochem. Biophys. Acta 721:321–327.

    PubMed  Google Scholar 

  18. Pohjanpelto, P., and Knuutila, S. (1982).Exp. Cell Res. 141:333–340.

    PubMed  Google Scholar 

  19. Pohjanpelto, P., Virtanen, I., and Höltta, E. (1981).Nature 37:475–477.

    Google Scholar 

  20. Steglich, C., Choi, J.H., and Scheffler, I.E. (1983). InAdvances in Polyamine Research, (eds.) Bachrach, U., Kaye, A., and Chayen, R. (Raven Press, New York), pp. 591–602.

    Google Scholar 

  21. Steglich, C., and Scheffler, I.E. (1982).J. Biol. Chem. 257:4603–4609.

    PubMed  Google Scholar 

  22. Abdel-Monem, M.M., Newton, N.E., and Weeks, C.E. (1974).J. Med. Chem. 17:447–451.

    PubMed  Google Scholar 

  23. Bey, P., Danzin, C., Van Dorsselaer, V., Mamont, P., Jung, M., and Tardif, C. (1978).J. Med. Chem. 21:50–55.

    PubMed  Google Scholar 

  24. Mamont, P.S., Bohlen, P., McCann, P.P., Bey, P., Schuber, F., and Tardif, C. (1976).Proc. Natl. Acad. Sci. U.S.A. 73:1626–1630.

    PubMed  Google Scholar 

  25. Metcalf, B.W., Bey, P., Danzin, C., Jung, M.J., Casara, P., and Vevert, J.P. (1978).J. Am. Chem. Soc. 100:2551–2553.

    Google Scholar 

  26. Landy-Otsuka, F., and Scheffler, I.E. (1978).Proc. Natl. Acad. Sci. U.S.A. 75:5001–5005.

    PubMed  Google Scholar 

  27. Luria, S.E., and Delbrück, M. (1943).Genetics 28:491–511.

    Google Scholar 

  28. Persson, L. (1982).Acta Chem. Scand. 36:685–688.

    Google Scholar 

  29. Seely, J.E., and Pegg, A.E. (1983).J. Biol. Chem. 257:2496–2500.

    Google Scholar 

  30. Boucek, R.J., Jr., and Lembach, K.J. (1977).Arch. Biochem. Biophys. 184:408–415.

    PubMed  Google Scholar 

  31. Pritchard, M.L., Seely, J.E., Pösö, H., Jefferson, L.S., and Pegg, A.E. (1981).Biochem. Biophys. Res. Commun. 100:1597–1603.

    PubMed  Google Scholar 

  32. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J., and Rutter, W.J. (1979).Biochemistry 18:5294–5299.

    PubMed  Google Scholar 

  33. Aviv, H., and Leder, P. (1972).Proc. Natl. Acad. Sci. U.S.A. 69:1408–1412.

    PubMed  Google Scholar 

  34. Goldberg, D.A. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:5794–5798.

    PubMed  Google Scholar 

  35. Lehrach, H., Diamond, D., Wozney, J.M., and Boedtker, H. (1977).Biochemistry 16:4743–4751.

    PubMed  Google Scholar 

  36. Kontula, K.K., Torkkeli, T.K., Bardin, C.W., and Jänne, O.A. (1984).Proc. Natl. Acad. Sci. U.S.A. 81:731–735.

    PubMed  Google Scholar 

  37. Lowy, I., Pellicer, A., Jackson, J.F., Sim, G.-K., Silverstein, S., and Axel, R. (1980).Cell 22:817–823.

    PubMed  Google Scholar 

  38. Kitani, T., and Fujisawa, H. (1981).Eur. J. Biochem. 119:177–181.

    PubMed  Google Scholar 

  39. Choi, J., and Scheffler, I.E. (1981).Somat. Cell. Genet. 7:219–233.

    PubMed  Google Scholar 

  40. Choi, J.H., and Scheffler, I.E. (1983).J. Biol. Chem. 258:12601–12608.

    PubMed  Google Scholar 

  41. Harris, M. (1982).Cell 29:483–492.

    PubMed  Google Scholar 

  42. Jones, P.A., and Taylor, S.M. (1980).Cell 20:85–93.

    PubMed  Google Scholar 

  43. Fenwick, Jr., R.G., Fuscoe, J.C., and Caskey, C.T. (1984).Somat. Cell Mol. Genet. 10:71–84.

    PubMed  Google Scholar 

  44. Brennard, J., Chinault, A.C., Konecki, D.S., Melton, D.W., and Caskey, C.T. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:1950–1954.

    PubMed  Google Scholar 

  45. Melton, D.W., Brennand, J., Ledbetter, D.H., Konecki, D.S., Chinault, A.C., and Caskey, C.T. (1982). InGene Amplification, (ed.) Schimke, R.T., (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York), pp. 59–65.

    Google Scholar 

  46. Chasin, L.A., Gaf, L., Ellis, N., Landzberg, M., and Urlaub, G. (1982). InGene Amplification, (ed.) Schimke, R.T. (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York), pp. 161–165.

    Google Scholar 

  47. Siminovitch, L. (1976).Cell 7:1–11.

    PubMed  Google Scholar 

  48. Siminovitch, L. (1979). InEucaryotic Gene Regulation, (eds). Axel, R., Maniatis, T., Fox, C.F. (Academic Press, New York), pp. 433–443.

    Google Scholar 

  49. Sun, L., and Singer, B. (1975).Biochemistry 14:1795–1802.

    PubMed  Google Scholar 

  50. Vogel, E., and Natarajan, A.T. (1982). InChemical Mutagens, Vol. 7, (eds.) deSerres, F.J., and Hollaender, A. (Plenum Press, New York), pp. 295–336.

    Google Scholar 

  51. Ivarie, R.D., and Morris, J.A. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:2967–2970.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steglich, C., Grens, A. & Scheffler, I.E. Chinese hamster cells deficient in ornithine decarboxylase activity: Reversion by gene amplification and by azacytidine treatment. Somat Cell Mol Genet 11, 11–23 (1985). https://doi.org/10.1007/BF01534730

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534730

Keywords

Navigation