Skip to main content

Advertisement

Log in

Stress and damage mechanisms in Dendrobium nobile Lindl. protocorm-like bodies during pre- and post-liquid nitrogen exposure in cryopreservation revealed by iTRAQ proteomic analysis

  • Cryopreservation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Liquid nitrogen (LN) exposure, a crucial step in cryopreservation, is mainly responsible for the reduced viability of protocorm-like bodies (PLBs) in Dendrobium nobile Lindl. To characterize the stress and damage mechanisms during pre- and post-LN exposure, the isobaric tags for relative and absolute quantification (iTRAQ)-labeling method was used to evaluate proteome profiles of PLBs in D. nobile ‘Hamana Lake Dream’ undergoing the cooling and rewarming process. In total, 1747 proteins were detected; a cluster of orthologous group (COG) analysis of the identified proteins revealed that posttranslational modification, protein turnover, and chaperone-related proteins were the predominant protein classes. Of these, 108 proteins were differentially changed and grouped into different functional categories, which included protein turnover, stress and defense, carbohydrate and energy metabolism, signaling transduction, metabolism, membrane, and transport. Furthermore, a quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that some proteins, such as annexin, l-ascorbate peroxidase 1, copper/zinc superoxide dismutase, glutathione S-transferase dehydroascorbate reductase 2-like, and an adenosine triphosphate (ATP) synthase, were regulated at their transcriptional levels. Based on functional analysis of these proteins, it was found that protein synthesis, processing, and degradation might be the main strategies used to reestablish cell balance after the cooling and rewarming process. Moreover, the production of reactive oxygen species (ROS) and the decline in energy production, signaling transduction, and membrane transport during pre- and post-LN exposure might be responsible for the viability loss of the PLBs. This work provides potential protein candidates for exploring the stress and cryo-injury mechanism in cryopreservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93:1019–1137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488

    Article  PubMed  CAS  Google Scholar 

  • Bhargava P, Mishra Y, Srivastava AK, Narayan OP, Rai LC (2013) Excess copper induces anoxygenic photosynthesis in Anabaena doliolum: a homology based proteomic assessment of its survival strategy. Photosynth Res 96:61–74

    Article  CAS  Google Scholar 

  • Bindschedler LV, Cramer R (2011) Quantitative plant proteomics. Proteomics 11:756–775

    Article  PubMed  CAS  Google Scholar 

  • Bologa KL, Fernie AR, Leisse A, Loureiro ME, Geigenberger P (2003) Biochemical processes and macromolecular structures—a bypass of sucrose synthase leads to low internal oxygen and impaired metabolic performance in growing potato tubers. Plant Physiol 132:2058–2072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–445

    Article  PubMed  CAS  Google Scholar 

  • Cao WL, Wang YX, Xiang ZQ, Li Z (2003) Cryopreservation-induced decrease in heat-shock protein 90 in human spermatozoa and its mechanism. Asian J Androl 5:43–46

    PubMed  CAS  Google Scholar 

  • Chen HJ, Su CT, Lin CH, Huang GJ, Lin YH (2010) Expression of sweet potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis plants. J Plant Physiol 167:838–847

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Ren Y, Zhang Y, Xu J, Zhang Z, Wang Y (2012) Genome-wide profiling of novel and conserved Populus microRNAs involved in pathogen stress response by deep sequencing. Planta 235:873–883

    Article  PubMed  CAS  Google Scholar 

  • Corbineau F, Engelmann F, Côme D (1990) Ethylene production as an indicator of chilling injury in oil palm (Elaeis guineensis Jacq.) somatic embryos. Plant Sci 71:29–34

    Article  CAS  Google Scholar 

  • Cruz de Carvalho MH, d’ Arcy-Lameta A, Roy-Macauley H, Gareil M, EI Maarouf H, Pham-Thi AT, Zuily Fodil Y (2001) Aspartic protease in leaves of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata L. Walp): enzymatic activity, gene expression and relation to drought susceptibility. FEBS Lett 492:242–246

  • Cui SX, Huang F, Wang J, Ma X, Cheng YS, Liu JY (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5:3162–3172

    Article  PubMed  CAS  Google Scholar 

  • Desrosiers P, Légaré C, Leclerc P, Sullivan R (2006) Membranous and structural damage that occur during cryopreservation of human sperm may be time-related events. Fertil Steril 85:1744–1752

    Article  PubMed  CAS  Google Scholar 

  • Di W, Jia MX, Xu J, Li BL, Liu Y (2017) Exogenous catalase and pyruvate dehydrogenase improve survival and regeneration and affect oxidative stress in cryopreserved Dendrobium nobile protocorm-like bodies. CryoLetters 38:228–238

    PubMed  CAS  Google Scholar 

  • Ellis J (1987) Proteins as molecular chaperones. Nature 328:378–379

    Article  PubMed  CAS  Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol-Plant 40:427–433

    Article  Google Scholar 

  • Espartero J, Sanchez-Aguayo I, Pardo JM (1995) Molecular characterization of glyoxalase-I from a higher plant; upregulation by stress. Plant Mol Biol 29:1223–1233

    Article  PubMed  CAS  Google Scholar 

  • Fahy GM, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21:407–426

    Article  PubMed  CAS  Google Scholar 

  • Fang JY, Wetten A, Johnston J (2008) Headspace volatile markers for sensitivity of cocoa (Theobroma cacao L.) somatic embryos to cryopreservation. Plant Cell Rep 27:453–461

    Article  PubMed  CAS  Google Scholar 

  • Feese MD, Faber HR, Bystrom CE, Pettigrew DW, Remington SJ (1998) Glycerol kinase from Escherichia coli and an Ala65→Thr mutant: the crystal structures reveal conformational changes with implications for allosteric regulation. Structure 6:1407–1418

    Article  PubMed  CAS  Google Scholar 

  • Felipe-Pérez YE, Valencia J, Pescador N, Roa-Espitia AL (2012) Cytoskeletal proteins F-actin and β-dystrobrevin are altered by the cryopreservation process in bull sperm. Cryobiology 64:103–109

    Article  PubMed  CAS  Google Scholar 

  • Folgado R, Sergeant K, Renaut J, Swennen R, Hausman JF, Panis B (2014) Changes in sugar content and proteome of potato in response to cold and dehydration stress and their implications for cryopreservation. J Proteome 98:99–111

    Article  CAS  Google Scholar 

  • Gale SL, Burritt DJ, Tervit HR, Adams SL, Mcgowan LT (2014) An investigation of oxidative stress and antioxidant biomarkers during Greenshell mussel (Perna canaliculus) oocyte cryopreservation. Theriogenology 82:779–789

    Article  PubMed  CAS  Google Scholar 

  • Gharechahi J, Hajirezaei MR, Salekdeh GH (2014) Comparative proteomic analysis of tobacco expressing cyanobacterial flavodoxin and its wild type under drought stress. J Plant Physiol 175:48–58

    Article  PubMed  CAS  Google Scholar 

  • Ginzinger DG (2002) Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol 30:503–512

    Article  PubMed  CAS  Google Scholar 

  • He LZ, Lu XM, Tian J, Yang YJ, Li B, Li J, Guo SR (2012) Proteomic analysis of the effects of exogenous calcium on hypoxic-responsive proteins in cucumber roots. Proteome Sci 10:1–15

    Article  CAS  Google Scholar 

  • Hinkson IV, Elias JE (2011) The dynamic state of protein turnover: it’s about time. Trends Cell Biol 21:293–303

    Article  PubMed  CAS  Google Scholar 

  • Huang SY, Kuo YH, Lee WC, Tsou HL, Lee YP, Chang HL, Wu JJ, Yang PC (1999) Substantial decrease of heat-shock protein 90 precedes the decline of sperm motility during cooling of boar spermatozoa. Theriogenology 51:1007–1016

    Article  PubMed  CAS  Google Scholar 

  • Ji W, Cong R, Li S, Li R, Qin Z, Li Y, Zhou X, Chen S, Li J (2016) Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress. Front Plant Sci 7:576

    Google Scholar 

  • Jia MX, Di W, Liu Y, Shi Y, Xie YR (2016) ROS-induced oxidative stress in nobile-type Dendrobium protocorm-like bodies (PLBs) during vitrification. CryoLetters 37:253–263

    PubMed  CAS  Google Scholar 

  • Jia MX, Xu J, Ye XJ, Liu Q, Wang Z, Liu Y (2013) Establishment of rapid propagation system for elite variety of Dendrobium nobile Lindl. ‘Senhe 2006’ by tissue culture. Plant Physiol J 49:1363–1367 (in Chinese)

    Google Scholar 

  • Kamal AHM, Rashid H, Sakata K, Komatsu S (2015) Gel-free quantitative proteomics approach to identify cotyledon proteins in soybean under flooding stress. J Proteome 112:1–13

    Article  CAS  Google Scholar 

  • Kaur S, Gupta AK, Kaur N, Sandhu JS, Gupta SK (2009) Antioxidative enzymes and sucrose synthase contribute to cold stress tolerance in chickpea. J Agron Crop Sci 195:393–397

    Article  CAS  Google Scholar 

  • Khan MN, Komatsu S (2016) Proteomic analysis of soybean root including hypocotyl during recovery from drought stress. J Proteome 144:39–50

    Article  CAS  Google Scholar 

  • Khatoon A, Rehman S, Salavati A, Komatsu S (2012) A comparative proteomics analysis in roots of soybean to compatible symbiotic bacteria under flooding stress. Amino Acids 43:2513–2525

    Article  PubMed  CAS  Google Scholar 

  • Koch KA, Peña MMO, Thiele DJ (1997) Copper-binding motifs in catalysis, transport, detoxification and signaling. Chem Biol 4:549–560

    Article  PubMed  CAS  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteome 74:1301–1132

    Article  CAS  Google Scholar 

  • Kumar R, Singh VK, Atreja SK (2014) Glutathione-S-transferase: role in buffalo (Bubalus bubalis) sperm capacitation and cryopreservation. Theriogenology 81:587–598

    Article  PubMed  CAS  Google Scholar 

  • Kurepa J, Wang S, Li Y, Smalle J (2009) Proteasome regulation, plant growth and stress tolerance. Plant Signal Behav 4:924–927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laohavisit A, Davies JM (2009) Multifunctional annexins. Plant Sci 177:532–539

    Article  CAS  Google Scholar 

  • Lee DG, Ahsan N, Lee SH, Lee JJ, Bahk JD, Kang KY, Lee BH (2009) Chilling stress-induced proteomic changes in rice roots. J Plant Physiol 166:1–11

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Lee EJ, Yang EJ, Lee JE, Park AR, Song WH, Park OK (2004) Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell 16:1378–1391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lessard C, Parent S, Leclerc P, Baileys JL, Sullivan DR (2000) Cryopreservation alters the levels of the bull sperm surface protein P25b. J Androl 21:700–707

    PubMed  CAS  Google Scholar 

  • Li BL (2008) Studies on differentially expressed protein of pollen cryopreservation and cryobank construction of Paeonia spp. Dissertation, Beijing Forestry University (in Chinese)

  • Li KF, Pidatala RR, Ramakrishna W (2012) Mutational, proteomic and metabolomic analysis of a plant growth promoting copper-resistant Pseudomonas spp. FEMS Microbiol Lett 335:140–148

    Article  PubMed  CAS  Google Scholar 

  • Li QL (2014) The study on tissue culture rapid propagation system of introduced varieties of Dendrobium nobile. Thesis, Beijing Forestry University (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFD0911&filename=1011044373.nh&uid=WEEvREcwSlJHSldRa1FhdkJkVWI2K2N6UlRLS2dPNHVkcE9tODNwTUttWT0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4ggI8Fm4gTkoUKaID8j8gFw!!&v=MDQ2OTdJUjhlWDFMdXhZUzdEaDFUM3FUcldNMUZyQ1VSTEtmWk9acEZ5bmdWTC9KVkYyNkg3TzhHdExMckpFYlA= ) cited February, 2018

  • Li W, Zhang CY, Lu QT, Wen XG, Lu CM (2011) The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. J Plant Physiol 168:1743–1752

    Article  PubMed  CAS  Google Scholar 

  • Li W, Zhao F, Fang W, Xie D, Hou J, Yang X, Zhao Y, Nie L, Lv S (2015) Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique. Front Plant Sci 6:732

    PubMed  PubMed Central  Google Scholar 

  • Lisenbee CS, Lingard MJ, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Planta 43:900–914

    CAS  Google Scholar 

  • Liu RL, Wang YY, Qin GZ, Tian SP (2016) iTRAQ-based quantitative proteomic analysis reveals the role of the tonoplast in fruit senescence. J Proteome 146:80–89

    Article  CAS  Google Scholar 

  • Luge T, Kube M, Freiwald A, Meierhofer D, Seemüller E, Sauer S (2014) Transcriptomics assisted proteomic analysis of Nicotiana occidentalis infected by Candidatus Phytoplasma mali strain AT. Proteomics 14:1882–1889

    Article  PubMed  CAS  Google Scholar 

  • Mandelc S, Radisek S, Jamnik P, Javornik B (2009) Comparison of mycelial proteomes of two Verticillium albo-atrum pathotypes from hop. Eur J Plant Pathol 125:159–171

    Article  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Plant Sci 9:490–498

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nie ZZ, Hirsch DS, Randazzo PA (2003) Arf and its many interactors. Curr Opin Cell Biol 15:396–404

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  PubMed  CAS  Google Scholar 

  • Nynca J, Arnold GJ, Fröhlich T, Ciereszko A (2015) Cryopreservation-induced alterations in protein composition of rainbow trout semen. Proteomics 15:2643–2654

    Article  PubMed  CAS  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    PubMed  PubMed Central  CAS  Google Scholar 

  • Reinbothe C, Pollmann S, Reinbothe S (2010) Singlet oxygen signaling links photosynthesis to translation and plant growth. Trends Plant Sci 15:499–506

    Article  PubMed  CAS  Google Scholar 

  • Ren L, Zhang D, Jiang XN, Gai Y, Wang WM, Reed BM, Shen XH (2013) Peroxidation due to cryoprotectant treatment is a vital factor for cell survival in Arabidopsis cryopreservation. Plant Sci 212:37–47

    Article  PubMed  CAS  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  PubMed  CAS  Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    Article  PubMed  CAS  Google Scholar 

  • Sancenon V, Puig S, Mira H, Thiele DJ, Penarrubia L (2003) Identification of a copper transporter family in Arabidopsis thaliana. Plant Mol Biol 51:577–587

    Article  PubMed  CAS  Google Scholar 

  • Sang QQ, Shan X, An YH, Shu S, Sun J, Guo SR (2017) Proteomic analysis reveals the positive effect of exogenous spermidine in tomato seedlings’ response to high-temperature stress. Front Plant Sci 8:120

    PubMed  PubMed Central  Google Scholar 

  • Sang T, Shan X, Li B, Shu S, Sun J, Guo SR (2016) Comparative proteomic analysis reveals the positive effect of exogenous spermidine on photosynthesis and salinity tolerance in cucumber seedlings. Plant Cell Rep 35:1769–1782

    Article  PubMed  CAS  Google Scholar 

  • Seo J, Lee K-J (2004) Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. J Biochem Mol Biol 37:35–44

    PubMed  CAS  Google Scholar 

  • Shindo T, Misas-Villamil JC, Horger AC, Song J, van der Hoorn RAL (2012) A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14. PLoS One 7:e29317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shiratake K, Martinoia E (2007) Transporters in fruit vacuoles. Plant Biotechnol 24:127–133

    Article  CAS  Google Scholar 

  • Su MJ, Naing AH, Park KI, Kim CK (2015) The effect of antifreeze protein on the cryopreservation of chrysanthemums. Plant Cell Tissue Organ Cult 123:665–671

    Article  CAS  Google Scholar 

  • Sze H, Schumacher K, Muller ML, Padmanaban S, Taiz L (2002) A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H+-ATPase. Trends Plant Sci 7:157–161

    Article  PubMed  CAS  Google Scholar 

  • Szul T, Sztul E (2011) COPII and COPI traffic at the ER-Golgi interface. Physiology 26:348–364

    Article  PubMed  CAS  Google Scholar 

  • Uchendu EE, Leonard SW, Traber MG, Reed BM (2010) Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. Plant Cell Rep 29:25–35

    Article  PubMed  CAS  Google Scholar 

  • Vacca RA, de Pinto MC, Valenti D, Passarella S, Marra E, De Gara L (2004) Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco bright-yellow 2 cells. Plant Physiol 134:1100–1112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Hemert MJ, Steensma HY, van Heusden GP (2001) 14-3-3 proteins: key regulators of cell division, signaling and apoptosis. BioEssays 23:936–946, 14-3-3 proteins: key regulators of cell division, signalling and apoptosis

  • Vergnolle C, Vaultier MN, Taconnat L, Renou JP, Kader JC, Zachowski A, Ruelland E (2005) The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiol 139:1217–1233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang JC, Yao LR, Li BC, Meng YX, Ma XL, Lai Y (2016) Comparative proteomic analysis of cultured suspension cells of the halophyte Halogeton glomeratus by iTRAQ provides insights into response mechanisms to salt stress. Front Plant Sci 7:1–12

    PubMed  PubMed Central  Google Scholar 

  • Wang MC, Peng ZY, Li CL, Li F, Liu C, Xia GM (2008) Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8:1470–1489

    Article  PubMed  CAS  Google Scholar 

  • Wang SQ, Wang W, Xu Y, Tang M, Fang JZ, Sun HY, Sun YY, Gu MJ, Liu ZL, Zhang ZX, Lin FX, Wu T, Song NH, Wang ZJ, Zhang W, Yin CJ (2014a) Proteomic characteristics of human sperm cryopreservation. Proteomics 15:2643–2654

    Google Scholar 

  • Wang XQ, Yang PF, Zhang XF, Xu YN, Kuang TY, Shen SH, He YK (2009) Proteomic analysis of the cold stress response in the moss, Physcomitrella patens. Proteomics 9:4529–4538

    Article  PubMed  CAS  Google Scholar 

  • Wang ZQ, Xu XY, Gong QQ, Xie C, Fan W, Yang JL, Lin QS, Zheng SJ (2014b) Root proteome of rice studied by iTRAQ provides integrated insight into aluminum stress tolerance mechanisms in plants. J Proteome 98:189–205

    Article  CAS  Google Scholar 

  • Ward ER, Payne GB, Moyer MB, Williams SC, Dincher SS, Sharkey KC, Beck JJ, Taylor HT, Ahl-Goy P, Meins F, Ryals JA (1991) Differential regulation of beta-1,3-glucanase messenger RNAs in response to pathogen infection. Plant Physiol 96:390–397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waschke A, Sieh D, Tamasloukht M, Fischer K, Mann P, Franken P (2006) Identification of heavy metal-induced genes encoding glutathione S-transferases in the arbuscular mycorrhizal fungus Glomus intraradices. Mycorrhiza 17:1–10

    Article  PubMed  CAS  Google Scholar 

  • Weimer RM, Jorgensen EM (2003) Controversies in synaptic vesicle exocytosis. J Cell Sci 116:3661–3666

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Li CY, Yao YN (2009) Proteomics analysis of drought stress-responsive proteins in Hippophae rhamnoides L. Plant Mol Biol Rep 27:153–161

    Article  CAS  Google Scholar 

  • Xu J (2014) A study on the mechanism of Magnolia denudata pollen cryopreservation. Dissertation, Beijing Forestry University (in Chinese)

  • Xu Y (2006) Cryopreservation of germplasm of ornamental ferns. Dissertation, Beijing Forestry University (in Chinese)

  • Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBSLett 580:1183–1191

    Article  CAS  Google Scholar 

  • Zeng FR, Wu XJ, Qiu BY, Wu F, Jiang LX, Zhang GP (2014) Physiological and proteomic alterations in rice (Oryza sativa L.) seedlings under hexavalent chromium stress. Planta 240:291–308

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Ren L, Chen GQ, Zhang J, Reed BM, Shen XH (2015a) ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox. Plant Cell Rep 34:1499–1513

    Article  PubMed  CAS  Google Scholar 

  • Zhang HZ, Ni ZY, Chen QJ, Guo ZJ, Gao WW, Su XJ, Qu YY (2015b) Proteomic responses of drought tolerant and drought sensitive cotton varieties to drought stress. Mol Gen Genomics 291:1293–1303

    Article  CAS  Google Scholar 

  • Zhang XG, Hu S, Han C, Zhu QC, Yan GJ, Hu JH (2015c) Association of heat shock protein 90 with motility of post-thawed sperm in bulls. Cryobiology 70:164–169

    Article  PubMed  CAS  Google Scholar 

  • Zheng SZ, Liu YL, Li B, Shang ZL, Zhou RG, Sun DY (2012) Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. Plant J 69:689–700

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31370693).

Author information

Authors and Affiliations

Authors

Contributions

WD prepared the PLB cultures of D. nobile Lindl. ‘Hamana Lake Dream’ for the iTRAQ-based proteomic analysis. W.D. and Y.L. performed the general statistical analysis of the proteomics data. W.D., X.R.J., M.X.J., and Y.L. were involved in the proteomics analysis and wrote the manuscript. Y.L., J.X., and B.L.L. conceptualized the design and approach used in the entire study.

Corresponding author

Correspondence to Yan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Editor: Barbara Reed

Electronic supplementary material

Table S1

Overview of identified proteins from Dendrobium nobile protocorm-like bodies pre- and post-liquid nitrogen exposure. (a) The accession number of the NCBI database of translated sequences from nucleic acids of Dendrobium nobile transcriptome. (b) Significant difference. (c) Geometric mean ratio corresponding to the protein reporter ion intensity originating from post-liquid nitrogen chilled–rewarmed (C-RM) group protein samples relative to pre-liquid nitrogen plant vitrification solution 2 (PVS2) group protein samples. (d) The accession number of Oryza sativa subsp. japonica protein database (XLSX 662 kb)

Table S2

Quantification of abundances of proteins from Dendrobium nobile protocorm-like bodies pre- and post-liquid nitrogen exposure. (a) The accession number of the NCBI database of translated sequences from nucleic acids of Dendrobium nobile transcriptome. (b) Significant difference. (c) Geometric mean ratio corresponding to the protein reporter ion intensity originating from post-liquid nitrogen chilled–rewarmed (C-RM) group protein samples relative to pre-liquid nitrogen plant vitrification solution 2 (PVS2) group protein samples. (d) The accession of Oryza sativa subsp. japonica protein database (XLSX 244 kb)

Table S3

Detailed information regarding the functional annotations of the differentially expressed proteins from Dendrobium nobile protocorm-like bodies during the pre- and post-LN exposure. (a) The accession of the NCBI database of translated sequences from nucleic acids of Dendrobium nobile transcriptome. (b) Geometric mean ratio corresponds to the protein reporter ion intensity originating from post-liquid nitrogen chilled–rewarmed (C-RM) group protein samples relative to pre-liquid nitrogen plant vitrification solution 2 (PVS2) group protein samples. (XLSX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, W., Jiang, X., Xu, J. et al. Stress and damage mechanisms in Dendrobium nobile Lindl. protocorm-like bodies during pre- and post-liquid nitrogen exposure in cryopreservation revealed by iTRAQ proteomic analysis. In Vitro Cell.Dev.Biol.-Plant 54, 253–272 (2018). https://doi.org/10.1007/s11627-018-9898-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-018-9898-x

Keywords

Navigation