Skip to main content

Advertisement

Log in

The possibilities and challenges of in vitro methods for plant conservation

  • Published:
Kew Bulletin Aims and scope Submit manuscript

Summary

Seed-based methods are generally the most efficient for propagating and storing plant germplasm, but these methods are not always adequate, and some species can benefit from in vitro methods for conservation. For species that produce few or no seeds in the wild, plants may be propagated in vitro, and in vitro shoot tips can provide material for cryostorage when seeds are not available or are recalcitrant. In vitro propagated plants may also serve as subjects for research, without depleting the genetic resources of the species. Clonal plants can be used to test out suitable habitat and can be used for basic research on endangered species, without disturbing the wild population. Despite the effectiveness of widely used techniques, however, there are still species that resist initiation into culture or that may be difficult to root or acclimatise. Similarly, tissue cryopreservation methods may be restrained by cost, particularly in maintaining multiple genotypes of many species. Maintaining such genotypes in vitro is also costly and runs the risk of loss or change over time. Examples of the successful use of in vitro methods will illustrate the variety of applications of these techniques, but costs and specific challenges will also be discussed to help define areas where further research is needed to realise the potential of in vitro methods as a tool for conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abu-Qaoud, H., Abu-Rayya, A. & Yaish, S. (2010). In vitro regeneration and somaclonal variation of Petunia hybrida. J. Fruit Ornam. Pl. Res. 18: 71 – 81.

    CAS  Google Scholar 

  • Aracama, C. V., Kane, M. E., Wilson, S. B. & Philman, N. L. (2008). Comparative growth, morphology, and anatomy of easy-and difficult-to-acclimatize sea oats (Uniola paniculata) genotypes during in vitro culture and ex vitro acclimatization. J. Amer. Soc. Hort. Sci. 133: 830 – 843.

    Google Scholar 

  • Bairu, M. W., Fennell, C. W. & van Staden, J. (2006). The effect of plant growth regulators on somaclonal variation in Cavendish banana (Musa AAA cv. ‘Zelig’). Sci. Hort. 108: 347 – 351.

    Article  CAS  Google Scholar 

  • Berjak, P., Farrant, J. M., Macaque, D. J. & Pammenter, N. W. (1990). Recalcitrant (homoiohydrous) seeds: the enigma of their desiccation-sensitivity. Seed Sci. Technol. 18: 297 – 310.

    Google Scholar 

  • Bunn, E., Turner, S., Panaia, M. & Dixon, K. W. (2007). The contribution of in vitro technology and cryogenic storage to conservation of indigenous plants. Austral. J. Bot. 55: 345 – 355.

    Article  Google Scholar 

  • Carvalho, M. A., Quesenberry, K. H. & Gallo, M. (2010). Comparative assessment of variation in the USA Arachis pintoi (Krap. and Greg.) germplasm collection using RAPD profiling and tissue culture regeneration ability. Pl. Syst. Evol. 288: 245 – 251.

    Article  CAS  Google Scholar 

  • Center for Plant Conservation (2009). Species profiles. http://www.centerforplantconsergvation.org. Center for Plant Conservation, St. Louis.

  • Charls, S. M. & Pence, V. C. (2004). In vitro propagation and acclimation of Avon Park harebells (Crotalaria avonensis), an endangered Florida species. In Vitro Cell. Developm. Biol. 40: 59A.

    Google Scholar 

  • Chaturvedi, H. C., Main, M. & Kidwai, N. R. (2007). Cloning of medicinal plants through tissue culture — a review. Indian J. Exp. Biol. 45: 937 – 948.

    PubMed  CAS  Google Scholar 

  • Corredoira, E., San-José, M. C., Ballester, A. & Vieitez, A. M. (2004). Cryopreservation of zygotic embryo axes and somatic embyos of European chestnut. CryoLett. 25: 33 – 42.

    Google Scholar 

  • Dulloo, M. E., Ebert, A. W., Dussert, S., Gotor, E., Astorga, C., Vasquez, N., Rakotomalala, J. J., Rabemiafara, A., Eira, M., Bellachew, B., Omondi, C., Engelmann, F., Anthony, F., Watts, J., Qamar, Z. & Snook, L. (2009). Cost efficiency of cryopreservation as a long-term conservation method for coffee genetic resources. Crop Sci. 49: 2123 – 2138.

    Article  Google Scholar 

  • Euliss, A. C., Fisk, M. C., Coleman McCleneghan, S. & Neufeld, H. S. (2007). Allocation and morphological responses to resource manipulations are unlikely to mitigate shade intolerance in Houstonia montana, a rare southern Appalachian herb. Canad. J. Bot. 85: 976 – 985.

    Article  CAS  Google Scholar 

  • Fabre, J. & Dereuddre, J. (1990). Encapsulation-dehydration: a new approach to cryopreservation of Solanum shoot tips. CryoLett. 11: 413 – 426.

    Google Scholar 

  • Foster, R. B. & Hubbell, S. P. (1990). The floristic composition of the Barro Colorado Island Forest. In: A. H. Gentry (ed.), Four Neotropical Rainforests, pp. 85 – 98. Yale University Press, New Haven.

    Google Scholar 

  • Gale, S. W., Yamazaki, J., Hutchings, M. J., Yukawa, T. & Miyoshi, K. (2010). Constraints on establishment in an endangered terrestrial orchid: a comparative study of in vitro and in situ seed germinability and seedling development in Nervilia nipponica. Bot. J. Linn. Soc. 163: 166 – 180.

    Article  Google Scholar 

  • George, E. F. (1996). Plant Propagation by Tissue Culture. Part 2. In Practice. 2 nd Edition. Exegetics Ltd., Edington.

  • González-Benito, M. E. & Pérez, C. (1997). Cryopreservation of nodal explants of an endangered plant species (Centaurium rigualii Esteve) using the encapsulation-dehydration method. Biodivers. & Conserv. 6: 583 – 590.

    Article  Google Scholar 

  • IUCN (2010). IUCN Sampled Red List Index for Plants. International Union for the Conservation of Nature, Royal Botanic Garden, Kew, and the Natural History Museum, London. http://www.iucnredlist.org/news/srli-plants-press-release.

  • Johnson, T. R., Stewart, S. L., Dutra, D., Kane, M. E. & Richardson, L. (2007). Asymbiotic and symbiotic seed germination of Eulophia alta (Orchidaceae) — preliminary evidence for the symbiotic culture advantage. Pl. Cell Tissue Organ Cult. 90: 313 – 323.

    Article  Google Scholar 

  • Kaeppler, S. M., Kaeppler, H. F. & Rhee, Y. (2000). Epigenetic aspects of somaclonal variation in plants. Pl. Molec. Biol. 43: 179 – 188.

    Article  CAS  Google Scholar 

  • Kane, M. E., Bird, K. T. & Lee, T. M. (1993). In vitro propagation of Ipomoea pes-caprae (Railroad vine). J. Coastal Res. 9: 356 – 362.

    Google Scholar 

  • Koo, B. & Smale, B. (2003). Economic costs of genebank operations. In: J. M. M. Engels & L. Visser (eds), A Guide to Effective Management of Germplasm Collections, IPGRI Handbook for Genebanks No. 6, pp. 93 – 106. International Plant Genetic Resources Institute (now Bioversity International), Rome.

  • Li, D.-Z. & Pritchard, H. W. (2009). The science and economics of ex situ plant conservation. Trends Pl. Sci. 14: 614 – 621.

    Article  CAS  Google Scholar 

  • Matsumoto, T., Sakai, A., Takahashi, C. & Yamada, K. (1995). Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by encapsulation-vitrification method. CryoLett. 16: 189 – 196.

    Google Scholar 

  • Normah, M. N. & Vengadasalam, M. (1992). Effects of moisture content on cryopreservation of Coffea and Vigna seeds and embryos. CryoLett. 13: 199 – 208.

    Google Scholar 

  • ____ & Makeen, A. M. (2008). Cryopreservation of excised embryos and embryonic axes. In: B. M. Reed (ed.), Plant Cryopreservation: A Practical Guide, pp. 211 – 240. Springer, New York.

    Chapter  Google Scholar 

  • Panaia, M., Senaratna, T., Dixon, K. W. & Sivasithamparam, K. (2004). High frequency somatic embryogenesis of koala fern (Baloskion tetraphyllum, Restoniaceae). In Vitro Cell. Developm. Biol. Pl. 40: 303 – 310.

    Article  CAS  Google Scholar 

  • Pence, V. C. (2005). In vitro collecting (IVC) I. The effect of media and collection method on contamination in temperate and tropical collections. In Vitro Cell. Developm. Biol. Pl. 41: 324 – 332.

    Article  Google Scholar 

  • ____ (2008). Cryopreservation of bryophytes and ferns. In: B. M. Reed (ed.), Plant Cryopreservation: A Practical Guide, pp. 117 – 140. Springer, New York.

    Chapter  Google Scholar 

  • ____ (2011). Evaluating costs for the in vitro propagation and preservation of endangered plants. In Vitro Cell. Developm. Biol. Pl. (in press).

  • ____ & Charls, S. M. (2003). In vitro collecting and establishment of tissue culture lines of three endangered Florida pawpaws. In Vitro Cell. Developm. Biol. 39: 19A.

    Google Scholar 

  • ____, Murray, S., Whitham, L., Cloward, D., Barnes, H. & Van Buren, R. (2008). Supplementation of the autumn buttercup population in Utah, USA, using in vitro propagated plants. In: P. S. Soorae (ed.), Global Re-introduction Perspectives, pp. 239 – 243. IUCN/SSC Re-introduction Specialist Group, Abu Dhabi.

    Google Scholar 

  • ____, Sandoval, J. A., Villalobos, V. M. & Engelmann, F. (eds) (2002). In Vitro Collecting Techniques for Germplasm Conservation. IPGRI Technical Bulletin No. 7. International Plant Genetic Resources Institute, Rome.

    Google Scholar 

  • ____, Winget, G. D., Lindsey, K. L., Plair, B. L. & Charls, S. M. (2010). Propagation and cryopreservation of Todsen’s pennyroyal (Hedeoma todsenii) in vitro. Madrono 56: 221 – 228.

    Article  Google Scholar 

  • Reed, B. M. (1990). Survival of in vitro-grown apical meristems of Pyrus following cryopreservation. HortSci. 25: 111 – 113.

    Google Scholar 

  • ____ (2008). Plant Cryopreservation: A Practical Guide. Springer, New York.

    Google Scholar 

  • ____, Engelmann, F., Dulloo, M. E. & Engels, J. M. M. (eds) (2004). Technical Guidelines for the Management of Field and In Vitro Germplasm Collections. IPGRI Handbooks for Genebanks, No. 7. International Plant Genetic Resources Institute (now Bioversity International), Rome.

  • ____, Normah, M. N. & Yu, X. (1994). Stratification is necessary for successful cryopreservation of axes from stored hazelnut. CryoLett. 15: 377 – 384.

    CAS  Google Scholar 

  • ____ & Uchendu, E. (2008). Controlled rate cooling. In: B. M. Reed (ed.), Plant Cryopreservation: A Practical Guide, pp. 77 – 92. Springer, New York.

    Chapter  Google Scholar 

  • Sakai, A., Kobayashi, S. & Oiyama, I. (1990). Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis) by vitrification. Pl. Cell Rep. 9: 30 – 33.

    Google Scholar 

  • ____, Hirai, D. & Niino, T. (2008). Development of PVS-based vitrification and encapsulation-vitrification protocols. In: B. M. Reed (ed.), Plant Cryopreservation: A Practical Guide, pp. 33 – 57. Springer, New York.

    Chapter  Google Scholar 

  • Sarasan, V., Cripps, R., Ramsay, M. M., Atherton, C., McMichen, M., Prendergast, G. & Rowntree, J. K. (2006). Conservation in vitro of threatened plants—progress in the past decade. In Vitro Cell. Developm. Biol. Pl. 42: 206 – 214.

    Article  Google Scholar 

  • Tanaka, D., Niino, T., Tsuchiya, Y., Shirata, K. & Uemura, M. (2008). Cryopreservation of shoot tips of endangered Hayachine-usuyukiso (Leontopodium hayachinense (Takeda) Hara et Kitam.) using a vitrification protocol. Pl. Genet. Res.: Characterization & Utilization 6: 164 – 166.

    Google Scholar 

  • Touchell, D. H., Dixon, K. W. & Tan, B. (1992). Cryopreservation of shoot-tips of Grevillea scapigera (Proteaceae): a rare and endangered plant from Western Australia. Austral. J. Bot. 40: 305 – 310.

    Article  Google Scholar 

  • Tweddle, J. C., Dickie, J. B., Baskin, C. C. & Baskin, J. M. (2003). Ecological aspects of desiccation sensitivity. J. Ecol. 91: 294 – 304.

    Article  Google Scholar 

  • Valero-Aracama, C., Kane, M. E., Wilson, S. B., Vu, J. C., Anderson, J. & Philman, N. L. (2006). Photosynthetic and carbohydrate status of easy- and difficult-to-acclimatize sea oats (Uniola paniculata L.) genotypes during in vitro culture and ex vitro acclimatization. In Vitro Cell. Developm. Biol. Pl. 42: 572 – 583.

    Article  CAS  Google Scholar 

  • Walter, K. S. & Gillett, H. J. (eds) (1998). 1997 IUCN Red List of Threatened Plants Compiled by the World Conservation Monitoring Centre, IUCN. The World Conservation Union, Gland, Switzerland, and Cambridge, UK.

  • Wang, Q., Tanne, E., Arav, A. & Gafny, R. (2000). Cryopreservation of in vitro-grown shoot tips of grapevine by encapsulation dehydration. Pl. Cell Tissue Organ Cult. 63: 41 – 46.

    Article  CAS  Google Scholar 

  • Withers, L. A. (1985). Cryopreservation of cultured cells and protoplasts. In: K. K. Kartha (ed.), Cryopreservation of Plant Cells and Organs, pp. 243 – 267. CRC Press, Boca Raton.

    Google Scholar 

  • Zehr, B. E., Williams, M. E., Duncan, D. R. & Widholm, J. M. (1987). Somaclonal variation in the progeny of plants regenerated from callus cultures of seven inbred lines of maize. Canad. J. Bot. 65: 491 – 499.

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the Institute of Museum and Library Services and the U.S. Fish & Wildlife Service that supported, in part, work at CREW that provided background for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie C. Pence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pence, V.C. The possibilities and challenges of in vitro methods for plant conservation. Kew Bull 65, 539–547 (2010). https://doi.org/10.1007/s12225-011-9245-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12225-011-9245-4

Key Words

Navigation