Skip to main content
Log in

Grapevines engineered to express cisgenic Vitis vinifera thaumatin-like protein exhibit fungal disease resistance

  • Developmental Biology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Cisgenic engineering involves isolation and modification of genetic elements from the host genome, which are reinserted to develop plant varieties with improved characteristics. As a first step toward production of fungal-disease resistant cisgenic grapevines, the Vitis vinifera thaumatin-like protein (vvtl-1) gene was isolated from “Chardonnay” and reengineered for constitutive expression. Embryogenic cultures of “Thompson Seedless” were initiated from leaves and transformed with Agrobacterium to regenerate cisgenic VVTL-1 plants. Cisgene presence and copy number were confirmed by PCR and quantitative real-time PCR. Protein expression was measured using ELISA. Among the plant lines tested, two exhibited a 7–10 day delay in powdery mildew disease development during greenhouse screening and decreased severity of black rot disease in field tests. Berries exhibited a 42.5% reduction in sour-bunch rot disease incidence compared to non-transformed controls after 3 wk of storage at room temperature. Although plants recovered in this study contain viral promoters and reporter/marker genes, this is the first report of a cisgenic approach to obtain broad-spectrum fungal-disease resistance in genetically engineered grapevine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Abad L. R.; Urzo D.; Lui M. P.; Narsimhan M. L.; Reuveni M.; Zhu J. K.; Nui X.; Singh N. K.; Hasegawa P. M.; Bressan R. A. Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Sci. 118: 11–23; 1996.

    Article  CAS  Google Scholar 

  • Alexander D.; Goodman R. M.; Gut-Rella M.; Glascock C.; Weymannii K.; Friedrich L.; Maddoxi D.; Ahl-goy P.; Luntzii T.; Ward E.; Ryalsii J. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein la. Proc Natl Acad Sci U S A 90: 7327–7331; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Chen W. P.; Chen P. D.; Liu D. J.; Kynsat R.; Friebe B.; Velazhahan R.; Muthukrishnan S.; Gill B. S. Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor. Appl. Genet. 99: 755–760; 1999.

    Article  CAS  Google Scholar 

  • Christensen L. P. Raisin grape varieties. In: Raisin Production Manual. University of California, Agricultural and Natural Resources Publication 3393., Oakland; 2000: 38–47 pp.

  • Datta K.; Velazahan R.; Oliva N.; Ona I.; Mew T.; Khush S.; Muthukrishnan S.; Datta S. K. Overexpression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctoniasolanicausing sheath blight disease. Theor Appl Genet 98: 1138–1145; 1998.

    Article  Google Scholar 

  • DeFrancisco L. Vintage genetic engineering. Nat Biotechnol 26: 261–263; 2008.

    Article  Google Scholar 

  • Dhekney S. A.; Li Z. T.; Compton M. E.; Gray D. J. Optimizing initiation and maintenance of Vitisembryogenic cultures. Hortic Sci 44: 1400–1406; 2009a.

    Google Scholar 

  • Dhekney S. A.; Li Z. T.; Dutt M.; Gray D. J. Agrobacterium-mediated transformation of embryogenic cultures and regeneration of transgenic plants in VitisroutundifoliaMichx. (muscadine grape). Plant Cell Rep. 27: 865–872; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Dhekney S. A.; Li Z. T.; Gray D. J. Factors influencing induction and maintenance of Vitisrotundifolia Michx. embryogenic cultures. Plant Cell Tissue Organ Cult Online First; 2010. doi:10.1007/s11240-010-9849-7.

    Google Scholar 

  • Dhekney S. A.; Li Z. T.; Zimmerman T. W.; Gray D. J. Factors influencing genetic transformation and plant regeneration of Vitis. Amer J Enol Vitic 60: 285–292; 2009b.

    CAS  Google Scholar 

  • Dutt M.; Li Z. T.; Dhekney S. A.; Gray D. J. A co-transformation system to produce transgenic grapevines free of marker genes. Plant Sci. 175: 432–430; 2008.

    Article  Google Scholar 

  • Gray D. J.; Jayasankar S.; Li Z. Vitis spp. Grape, Chapt. 22. In: Litz R. E. (ed) Biotechnology of fruit and nut crops. CAB International Wallingford, Oxford, pp 672–706; 2005.

    Chapter  Google Scholar 

  • Jacobs A. K.; Dry I. B.; Robinson S. P. Induction of different pathogenesis-related cDNAs in grapevine infected with powdery mildew and treated with ethephon. Pl Path 48: 325–336; 1999.

    Article  CAS  Google Scholar 

  • Jayasankar S.; Li Z.; Gray D. J. In vitro selection of Vitisvinifera ‘Chardonnay’ with Elsinoeampelina culture filtrate is accompanied by fungal resistance and enhanced secretion of chitinase. Planta 211: 200–208; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Jayasankar S.; Li Z.; Gray D. J. Constitutive expression of Vitisviniferathaumatin-like protein after in vitro selection and its role in anthracnose resistance. Funct. Plant Biol. 30: 1105–1115; 2003.

    Article  CAS  Google Scholar 

  • Li Z.; Jayasankar S.; Gray D. J. An improved enzyme-linked immunoabsorbent assay protocol for the detection of small lytic peptides in transgenic grapevines (Vitisvinifera). Plant Mol Biol Rep 19: 341–351; 2001.

    Article  CAS  Google Scholar 

  • Li X.; Gasic K.; Cammue B.; Broekaert W.; Korban S. S. Transgenic rose lines harboring an antimicrobia protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerothecapannosa). Planta 218: 226–232; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Li Z. T.; Dhekney S. A.; Dutt M.; Gray D. J. An improved protocol for Agrobacterium-mediated transformation of grapevine. Plant Cell, Tissue Organ Cult 93: 311–321; 2008.

    Article  Google Scholar 

  • Li Z. T.; Dhekney S. A.; Dutt M.; Van Aman M.; Tattersall J.; Kelley K. T.; Gray D. J. Optimizing Agrobacterium-mediated transformation of grapevine. In Vitro Cell Dev Biol Plant 42: 220–227; 2006.

    Article  CAS  Google Scholar 

  • Li Z. T.; Jayasankar S.; Gray D. J. Bi-directional duplex promoters with duplicated enhancers significantly increase transgene expression in grape and tobacco. Trans Res 13: 143–154; 2004.

    Article  CAS  Google Scholar 

  • Lodhi M. A.; Ye G. N.; Weeden N. F.; Reisch B. J. A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 12: 6–13; 1994.

    Article  CAS  Google Scholar 

  • Melchers L. S.; Sela-Buurlage M. B.; Vloemans S. A.; Woloshuk C. P.; Van Roekel J.; Pen J. S. C.; Van den Elzen P. J. M. Cornelissen B. J. C. Extracellular targeting of the the vacuolar tobacco protein AP24, chitinase and β 1,3-glucanase in transgenic plants. Plant Mol Biol 21: 583–593; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Nigro F.; Schena L.; Ligorio A.; Pentimone I.; Ippolito A.; Salerno M. G. Control of table grape storage rots by pre-harvest applications of salts. Postharvest Biol Biotech 42: 142–149; 2006.

    Article  CAS  Google Scholar 

  • Okuda T.; Fukui M.; Takayanagi T.; Yokotsuka K. Characterization of major stable proteins in Chardonnay wine. Food Sci Technol Res 12: 131–136; 2006.

    Article  CAS  Google Scholar 

  • Pearson R.; Goheen A. (ed.). Compendium of grape diseases. American Pathological Society Press, St. Paul, MN.93; 1988: 7–8 pp

  • Sambrook J.; Fritsch E.; Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York; 1989.

    Google Scholar 

  • Schouten H. S.; Krens F. A.; Jacobsen E. Cisgenic plants are similar to traditionally bred plants: international regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Rep. 7: 750–753; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Tattersall D. B.; van Heeswicjck R.; Hoj P. B. Identification and characterization of a fruit specific, thaumatin-like protein that accumulates at very high levels in conjunction with the onset of sugar accumulation and berry softening in grapes. Plant Ph 114: 759–769; 1997.

    Article  CAS  Google Scholar 

  • Walker A. Grape expectations realized. Nat Biotechnol 14: 582; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Winkler A. J.; Cook J. A.; Kliewer W. M.; Lider L. A. General viticulture. University of California Press, Berkeley; 1974.

    Google Scholar 

  • Yamamoto T.; Iketani H.; Ieki H.; Nishizawa Y.; Notsuka K.; Hibi T.; Hayashi T.; Matsuta N. Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep. 19: 639–646; 2000.

    Article  CAS  Google Scholar 

  • Yun D. J.; Zhao Y.; Pardo J. M.; Narsimhan M. L.; Damsz B.; Lee H.; Abad L. R.; D’Urzo M. P.; Hasegawa P. M.; Bressan R. A. Stress proteins on the yeast cell surface determine resistance to osmotin, a plant antifungal protein. Proc. Natl Acad. Sci. U.S.A. 94: 7082–7080; 1997.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Florida Department of Agriculture and Consumer Services’ Viticulture Trust Fund and the Florida Agricultural Experiment Station. We thank Mary S Brennan for assistance with statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis J. Gray.

Additional information

Editor: D. T. Tomes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhekney, S.A., Li, Z.T. & Gray, D.J. Grapevines engineered to express cisgenic Vitis vinifera thaumatin-like protein exhibit fungal disease resistance. In Vitro Cell.Dev.Biol.-Plant 47, 458–466 (2011). https://doi.org/10.1007/s11627-011-9358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-011-9358-3

Keywords

Navigation