Skip to main content
Log in

Nondestructive evaluation of the photosynthetic properties of micropropagated plantlets by imaging photochemical reflectance index under low light intensity

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The photochemical reflectance index (PRI) of micropropagated potato leaves was estimated nondestructively from outside the culture vessel using a PRI imaging system developed by the present group. The PRI was determined under low light intensity conditions after dark treatment and compared with the chlorophyll fluorescence parameter Fv/Fm, which denotes photosystem II maximum quantum yield. Short-term high-light treatment decreased Fv/Fm of the plantlets. Culture conditions such as temperature and sucrose concentration also affected Fv/Fm. A linear relationship between the PRI and Fv/Fm was observed in both cases of high-light treatment and different culture conditions, suggesting the potential of the PRI to be used as a substitute for Fv/Fm. PRI estimated from reflection images under low light intensity conditions may be used for rapid and noninvasive evaluation of photosynthetic properties of micropropagated plantlets in a similar manner to Fv/Fm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Aitken-Christie J.; Davies H. E.; Kubota C.; Fujiwara K. Effect of nutrient media composition on sugar-free growth and chlorophyll fluorescence of Pinus radiata shoots in vitro. Acta. Hortic. 319: 125–130; 1992.

    Google Scholar 

  • Arigita L.; González A.; Tamés R. S. Influence of CO2 and sucrose on photosynthesis and transpiration of Actinidia deliciosa explants cultured in vitro. Physiol. Plant. 115: 166–173; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Filella I.; Peñuelas J.; Llorens L.; Estiarte M. Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean Shrubland submitted to experimental warming and drought. Remote Sens. Environ. 90: 308–318; 2004.

    Article  Google Scholar 

  • Gamon J. A.; Field C. B.; Bilger W.; Björkman O.; Fredeen A. L.; Peñuelas J. Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 85: 1–7; 1990.

    Article  Google Scholar 

  • Gamon J. A.; Serrano L.; Surfus J. S. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112: 492–501; 1997.

    Article  Google Scholar 

  • Hall F. G.; Hilker T.; Coops N. C.; Lyapustin A.; Huemmrich K. F.; Middleton E.; Margolis H.; Drolet G.; Black T. A. Multi-angle remote sensing of forest light use efficiency by observing PRI variation with canopy shadow fraction. Remote Sens. Environ. 112: 3201–3211; 2008.

    Article  Google Scholar 

  • Hofman P.; Haisel D.; Komenda J.; Vágner M.; Tichá I.; Schäfer C.; Čapková V. Impact of in vitro cultivation conditions on stress responses and on changes in thylakoid membrane proteins and pigments of tobacco during ex vitro acclimation. Biol. Plant. 45: 189–195; 2002.

    Article  CAS  Google Scholar 

  • Ibaraki Y. Evaluation of photosynthetic capacity in micropropagated plants by image analysis. In: Dutta Gupta S.; Ibaraki Y. (eds) Plant tissue culture engineering. Springer, The Netherlands, pp 15–29; 2006.

    Google Scholar 

  • Ibaraki Y.; Iida Y.; Kurata K. Effects of air currents on gas exchange of culture vessels. Acta. Hortic. 319: 221–224; 1992.

    Google Scholar 

  • Ibaraki Y.; Kurata K. Application of image analysis to plant cell suspension cultures. Comput. Electron. Agric. 30: 193–203; 2001.

    Article  Google Scholar 

  • Ibaraki Y.; Matsumura K. Non-destructive evaluation of the photosynthetic capacity of PSII in micropropagated plants. J. Agric. Meteorol. 60: 1073–1076; 2005.

    Google Scholar 

  • Ibaraki Y.; Matsumura K.; Dutta Gupta S. Low-cost photochemical reflectance index measurements of micropropagated plantlets using image analysis. Comput. Electron. Agric. 71: 170–175; 2010.

    Article  Google Scholar 

  • Ibaraki Y.; Nozaki Y. Estimation of light intensity distribution in a culture vessel. Plant Cell Tissue Organ Cult. 80: 111–113; 2005.

    Article  Google Scholar 

  • Jo E.-A.; Tewari R. K.; Hahn E.-J.; Paek K.-Y. In vitro sucrose concentration affects growth and acclimatization of Alocasia amazonica plantlets. Plant Cell Tissue Organ Cult. 96: 307–315; 2009.

    Article  CAS  Google Scholar 

  • Kato M. C.; Hikosaka K.; Hirose T. Leaf discs floated on water are different from intact leaves in photosynthesis and photoinhibition. Photosynth. Res. 72: 65–70; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Király I.; Balla I.; Jakab J.; Tamás L.; Sárvári E. Responses of the photosynthetic system and peroxidase activity to the rooting conditions of osk micropropagation. Plant Cell Tissue Organ Cult. 66: 155–158; 2001.

    Article  Google Scholar 

  • Kozai T.; Smith M. A. L. Environmental control in plant tissue culture. General introduction and overview. In: Aitken-Christie J.; Kozai T.; Smith M. A. L. (eds) Automation and environmental control in plant tissue cultures. Kluwer Academic Publishers, Dordrecht, pp 301–318; 1995.

    Google Scholar 

  • Kubota C. Concepts and background of photoautotrophic micropropagation. In: Morohoshi N.; Komamine A. (eds) Molecular breeding of woody plants. Elsevier, Amsterdam, pp 325–334; 2001.

    Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tabacco tissue cultures. Physiol. Plant. 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Nakaji T.; Oguma H.; Fujinuma Y. Seasonal changes in the relationship between photochemical reflectance index and photosynthetic light use efficiency of Japanese larch needles. Int. J. Remote Sens. 27: 493–509; 2006.

    Article  Google Scholar 

  • Naumann J. C.; Young D. R.; Anderson J. E. Liking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species. Physiol. Plant. 131: 422–433; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Naumann J. C.; Young D. R.; Anderson J. E. Leaf chlorophyll fluorescence, reflectance, and physiological response to fresh water and salt water flooding in the ever green shrub, Myricacerifera. Environ. Exp. Bot. 63: 402–409; 2008.

    Article  CAS  Google Scholar 

  • Serret M. D.; Trillas M. I.; Araus J. L. The effect of in vitro culture conditions on the pattern of photoinhibition during acclimation of gardenia plantlets to ex vitro conditions. Photosynthetica 39: 67–73; 2001.

    Article  CAS  Google Scholar 

  • Smith M. A. L. Image analysis for plant tissue culture and micropropagtion. In: Aitken Christie J.; Kozai T.; Smith M. A. L. (eds) Automation and environmental control in plant tissue cultures. Kluwer Academic Publishers, Dordrecht, pp 145–163; 1995.

    Google Scholar 

  • Stylinski C. D.; Gamon J. A.; Oechel W. C. Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species. Oecologia 131: 366–374; 2002.

    Article  Google Scholar 

  • Suárez L.; Zarco-Tejada P. J.; Berni J. A. J.; González-Dugo V.; Fereres E. Modelling PRI for water stress detection using radiative transfer models. Remote Sens. Environ. 113: 730–744; 2009.

    Article  Google Scholar 

  • Váňová M.; Kummerová M.; Klemš M.; Zezulkaet S. Fluoranthene influences endogenous abscisic acid level and primary photosynthetic processes in pea (Pisum sativum L.) plants in vitro. Plant Growth Regul. 57: 39–47; 2009.

    Article  Google Scholar 

  • Weng J.-H.; Lai K.-M.; Liao T.-S.; Hwang M.-Y.; Chen Y.-N. Relationships of photosynthetic capacity to PSII efficiency and to photochemical reflectance index of Pinus taiwanensis through different seasons at high and low elevations of sub-tropical Taiwan. Trees 23: 347–356; 2009.

    Article  CAS  Google Scholar 

  • Yamamoto H. Y. Biochemistry of violaxanthin cycle in higher plant. Pure Appl. Chem. 51: 639–648; 1979.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was conducted with the financial support from DST, New Delhi, India and Japan Society for the Promotion of Science, Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuomi Ibaraki.

Additional information

Editor: Y. Takahata

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibaraki, Y., Dutta Gupta, S. Nondestructive evaluation of the photosynthetic properties of micropropagated plantlets by imaging photochemical reflectance index under low light intensity. In Vitro Cell.Dev.Biol.-Plant 46, 530–536 (2010). https://doi.org/10.1007/s11627-010-9296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-010-9296-5

Keywords

Navigation