Skip to main content
Log in

miR-143 regulates proliferation and differentiation of bovine skeletal muscle satellite cells by targeting IGFBP5

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Development of skeletal muscle is a complicated biological process regulated by various regulation factors and signal pathways. MicroRNAs (miRNAs) are novel gene regulators that control muscle cell development. microRNA-143 (miR-143) is highly expressed in skeletal muscle, and we found that miR-143 level is significantly increased during bovine skeletal muscle satellite cells (MSCs) differentiation process through microarray analysis and qRT-PCR detection. However, the function of miR-143 in bovine muscle development remained unclear. In our work, the functions of miR-143 in bovine MSCs myogenic differentiation were investigated. We discovered that IGFBP5 is directly regulated by miR-143 using a dual-luciferase reporter assay. Overexpression of miR-143 led to decreased level of IGFBP5 protein and restrained cell proliferation and differentiation, while downregulation of miR-143 resulted in increased levels of IGFBP5 protein and restrained cell proliferation but improved differentiation. IGFBP5, an important component of IGF signaling pathway, contributes greatly to bovine muscle cell development. A mechanism that miR-143 can regulate the proliferation and differentiation of bovine MSCs through changing expression of IGFBP5 was elucidated by our study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Blumensatt M, Wronkowitz N, Wiza C, Cramer A, Mueller H, Rabelink MJ, Hoeben RC, Eckel J, Sell H, Ouwens DM (2014) Adipocyte-derived factors impair insulin signaling in differentiated human vascular smooth muscle cells via the upregulation of mir-143. Biochim Biophys Acta 1842:275–283

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, Cai X, Wang K, Wang G, Ba Y, Zhu L, Wang J, Yang R, Zhang Y, Ren Z, Zen K, Zhang J, Zhang CY (2009) Role of mir-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28:1385–1392

    Article  CAS  PubMed  Google Scholar 

  • Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460:705–710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Y, Wang YM, Zhang WR, Liu XF, Li X, Ding XB, Guo H (2015) The role of microRNA-1 and microRNA-206 in the proliferation and differentiation of bovine skeletal muscle satellite cells. In Vitro Cell Dev Biol Anim 52:27–34

    Article  PubMed  Google Scholar 

  • Dai Y, Zhang WR, Wang YM, Liu XF, Li X, Ding XB, Guo H (2016) MicroRNA-128 regulates the proliferation and differentiation of bovine skeletal muscle satellite cells by repressing Sp1. Mol Cell Biochem 414:37–46

    Article  CAS  PubMed  Google Scholar 

  • Duan C, Ren H, Gao S (2010) Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: roles in skeletal muscle growth and differentiation. Gen Comp Endocrinol 167:344–351

    Article  CAS  PubMed  Google Scholar 

  • Gagan J, Dey BK, Layer R, Yan Z, Dutta A (2011) MicroRNA-378 targets the myogenic repressor myoR during myoblast differentiation. J Biol Chem 286:19431–19438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Y, Chen J (2011) MicroRNAs in skeletal myogenesis. Cell Cycle 10:441–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goljanek-Whysall K, Pais H, Rathjen T, Sweetman D, Dalmay T, Münsterberg A (2012) Regulation of multiple target genes by mir-1 and mir-206 is pivotal for c2c12 myblast differentiation. J Cell Sci 125:3590–3600

    Article  CAS  PubMed  Google Scholar 

  • Güller I, Russell AP (2010) MicroRNAs in skeletal muscle: their role and regulation in development, disease and function. J Physiol 588:4075–4087

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivey KN, Muth A, Arnold J, King FW, Yeh RF, Fish JE, Hsiao EC, Schwartz RJ, Conklin BR, Bernstein HS, Srivastava D (2008) MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2:219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia L, Li YF, Wu GF, Song ZY, Lu HZ, Song CC, Zhang QL, Zhu JY, Yang GS, Shi XE (2013) miRNA-199a-3p regulates C2C12 myoblast differentiation through IGF-1/AKT/mTOR signal pathway myoblast differentiation. Int J Mol Sci 15:296–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Park YK, Lee KP, Lee SM, Kang TW, Kim HJ, Dho SH, Kim SY, Kwon KS (2014) Genome-wide profiling of the microRNA-mRNA regulatory network in skeletal muscle with aging. Aging 6:524–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitzmann M, Fernandez A (2001) Crosstalk between cell cycle regulators and the myogenic factor myoD in skeletal myoblasts. Cell Mol Life Sci 58:571–579

    Article  CAS  PubMed  Google Scholar 

  • Kuang W, Tan J, Duan Y, Duan J, Wang W, Jin F (2009) Cyclic stretch induced miR-146a upregulation delays C2C12 myogenic differentiation through inhibition of Numb. Biochem Biophys Res Commun 378:259–263

    Article  CAS  PubMed  Google Scholar 

  • Kuemmerle JF, Zhou H (2002) Insulin-like growth factor-binding protein-5 (IGFBP-5) stimulates growth and IGF-I secretion in human intestinal smooth muscle by Ras-dependent activation of p38 MAP kinase and Erk1/2 pathways. J Biol Chem 277:20563–20571

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Kim JE, Kang YJ (2013) Insulin like growth factor binding protein-5 regulates excessive vascular smooth muscle cell proliferation in spontaneously hypertensive rats via ERK 1/2 phosphorylation. Korean J Physiol Pharmacol 17:157–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Zheng D, Zhang B, Liu L, Ou J, Chen W, Xiong S, Gu Y, Yang J (2014) Mir-208 promotes cell proliferation by repressing SOX6 expression in human esophageal squamous cell carcinoma. J Transl Med 12:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Li P, Liu Y, Yi B, Wang G, You X, Zhao X (2013) MicroRNA-638 is highly expressed in human vascular smooth muscle cells and inhibits PDGF-BB-induced cell proliferation and migration through targeting orphan nuclear receptor NOR1. Cardiovasc Res 99:185–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson PB (2015) Skeletal muscle satellite cells as myogenic progenitors for muscle homoeostasis, growth, regeneration and repair. Acta Physiol 213:537–538

    Article  CAS  Google Scholar 

  • Prado-Uribe MD, Soto-Abraham MV, Mora-Villalpando CJ, Gallardo JM, Bonilla E, Avila M, Tena E, Paniagua R (2013) Role of thyroid hormones and miR-208 in myocardial remodeling in 5/6 nephrectomized rats. Arch Med Res 44:616–622

    Article  CAS  PubMed  Google Scholar 

  • Ren H, Yin P, Duan C (2008) IGFBP-5 regulates muscle cell differentiation by binding to IGF-II and switching on the IGF-II auto-regulation loop. J Cell Biol 182:979–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456:502–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz E, Jaryszak DL, Valliere CR (1985) Response of satellite cells to focal skeletal muscle injury. Muscle Nerve 8:217–222

    Article  CAS  PubMed  Google Scholar 

  • Seale P, Polesskaya A, Rudnicki MA (2003) Adult stem cell specification by Wnt signaling in muscle regeneration. Cell Cycle 2:418–419

    Article  CAS  PubMed  Google Scholar 

  • Soriano-Arroquia A, Mccormick R, Molloy AP, Mcardle A, Goljanek-Whysall K (2016) Age-related changes in miR-143-3p:IGFBP5 interactions affect muscle regeneration. Aging Cell 15:361–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Liu L, Yang XJ, Wu Z (2004) Akt binds prohibitin 2 and relieves its repression of MyoD and muscle differentiation. J Cell Sci 117:3021–3029

    Article  CAS  PubMed  Google Scholar 

  • Wang YM, Ding XB, Dai Y, Liu XF, Guo H, Zhang Y (2015) Identification and bioinformatics analysis of miRNAs involved in bovine skeletal muscle satellite cell myogenic differentiation. Mol Cell Biochem 404:113–122

    Article  CAS  PubMed  Google Scholar 

  • Wilson EM, Tureckova J, Rotwein P (2004) Permissive roles of phosphatidyl inositol 3-kinase and AKT in skeletal myocyte maturation. Mol Biol Cell 15:497–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang WW, Tong HL, Sun XF, Hu Q, Yang Y, Li SF, Yan YQ, Li GP (2015) Identification of miR-2400 gene as a novel regulator in skeletal muscle satellite cells proliferation by targeting MYOG gene. Biochem Biophys Res Commun 463:624–631

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31201021), the Training Programs of Innovation and Entrepreneurship for Undergraduates of Tianjin (201510061006), and the 131 Innovative Talents Cultivation Project in Tianjin (J01005021104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Bin Ding or Hong Guo.

Additional information

Editor: Tetsuji Okamoto

Wei Ran Zhang and Hui Na Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W.R., Zhang, H.N., Wang, Y.M. et al. miR-143 regulates proliferation and differentiation of bovine skeletal muscle satellite cells by targeting IGFBP5. In Vitro Cell.Dev.Biol.-Animal 53, 265–271 (2017). https://doi.org/10.1007/s11626-016-0109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-016-0109-y

Keywords

Navigation