Skip to main content
Log in

Neuroprotective effect of peptides extracted from walnut (Juglans Sigilata Dode) proteins on Aβ25-35-induced memory impairment in mice

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Alzheimer’s disease (AD) is one of the major neurodegenerative disorders of the elderly, which is characterized by the accumulation and deposition of amyloid-beta (Aβ) peptide in human brains. Oxidative streβs and neuroinflammation induced by Aβ in brain are increasingly considered to be responsible for the pathogenesis of AD. The present study aimed to determine the protective effects of walnut peptides against the neurotoxicity induced by Aβ25-35 in vivo. Briefly, the AD model was induced by injecting Aβ25-35 into bilateral hippocampi of mice. The animals were treated with distilled water or walnut peptides (200, 400 and 800 mg/kg, p.o.) for five consecutive weeks. Spatial learning and memory abilities of mice were investigated by Morris water maze test and step-down avoidance test. To further explore the underlying mechanisms of the neuroprotectivity of walnut peptides, the activities of superoxide dismutase (SOD), glutathione (GSH), acetylcholine esterase (AChE), and the content of malondialdehyde (MDA) as well as the level of nitric oxide (NO) in the hippocampus of mice were measured by spectrophotometric method. In addition, the levels of 8-hydroxy-2’-deoxyguanosine (8-OHdG), tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β) and IL-6 in the samples were determined using ELISA. The hippocampal expressions of inducible nitric oxide synthase (iNOS) and nuclear factor κB (NF-κB) were evaluated by Western blot analysis. The results showed that walnut peptides supplementation effectively ameliorated the cognitive deficits and memory impairment of mice. Meanwhile, our study also revealed effective restoration of levels of antioxidant enzymes as well as inflammatory mediators with supplementation of walnut peptides (400 or 800 mg/kg). All the above findings suggested that walnut peptides may have a protective effect on AD by reducing inflammatory responses and modulating antioxidant system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alagiakrishnan K, GillS S, Fagarasanu A. Genetics and epigenetics of Alzheimer’s disease. Postgrad Med J, 2012,88(1043):522–529

    Article  CAS  PubMed  Google Scholar 

  2. Durazzo TC, Mattsson N, Weiner MW. Smoking and increased Alzheimer’s disease risk: A review of potential mechanisms. Alzheimer’s Dement, 2014,10(3):S122–S145

    Article  Google Scholar 

  3. Prince M, Bryce R, Albanese E, et al. The global prevalence of dementia: A systematic review and meta analysis. Alzheimer’s Dement, 2013,9(1):63–75

    Article  Google Scholar 

  4. Tang BL. Neuronal protein trafficking associated with Alzheimer disease. Cell Adhes Migr, 2009,3(1):118–128

    Article  Google Scholar 

  5. Corporation HP. Protein Tau: prime cause of synaptic and neuronal degeneration in Alzheimer’s disease. Int J Alzheimer’s Dement, 2012,2012:1–13

    Google Scholar 

  6. Cai Z, Zhao B, Ratka A. Oxidative streβs and β-amyloid protein in Alzheimer’s disease. Neuro Mol Med, 2011,13(4):223–250

    Article  CAS  Google Scholar 

  7. Zhang J, Zhen YF, Pu-Bu-Ci-Ren, et al. Salidroside attenuates beta amyloid-induced cognitive deficits via modulating oxidative stress and inflammatory mediators in rat hippocampus. Behav Brain Res, 2013,244(3):70–81

    Article  CAS  PubMed  Google Scholar 

  8. Pérez-Severiano F, Salvatierra-Sánchez R, Rodríguez-Pérez M, et al. S-Allylcysteine prevents amyloid-β peptide-induced oxidative stress in rat hippocampus and ameliorates learning deficits. Eur J Pharmacol, 2004,489(3):197–202

    Article  PubMed  Google Scholar 

  9. Galoyan AA, Sarkiβsian JS, Chavushyan VA, et al. Neuroprotection by hypothalamic peptide proline-rich peptide-1 in Aβ25–35 model of Alzheimer’s disease. Alzheimer’s Dement, 2008,4(5):332–344

    Article  CAS  Google Scholar 

  10. Yamaguchi Y, Kawashima S. Effects of amyloid-β-(25–35) on passive avoidance, radial-arm maze learning and choline acetyltransferase activity in the rat. Eur J Pharmacology, 2001,412(3):265–272

    Article  CAS  Google Scholar 

  11. Selkoe DJ. Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid β-protein. J AD, 2001,3(1):75–80

    CAS  Google Scholar 

  12. Mhatre M., Floyd RA, Hensley K. Oxidative stress and neuroinflammation in Alzheimer’s disease and amyotrophic lateral sclerosis: common links and potential therapeutic targets. J AD, 2004,6(2):147–157

    CAS  Google Scholar 

  13. Broussard GJ, Mytar J, Li RC, et al. The role of inflammatory processes in Alzheimer’s disease. Inflammopharmacology, 2012,20(3):109–126

    Article  CAS  PubMed  Google Scholar 

  14. Emerit J, Edeas M, Bricaire F. Neurodegenerative diseases and oxidative stress. Biomed Pharmacotherapy, 2004,58(1):39–46

    Article  CAS  Google Scholar 

  15. De Iuliis A, Grigoletto J, Recchia A, et al. A proteomic approach in the study of an animal model of Parkinson’s disease. Clin Chim Acta, 2005,357(2):202–209

    Article  PubMed  Google Scholar 

  16. Qin L, Liu Y, Wang T, et al. NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem, 2003,279(2):1415–1421

    Article  PubMed  Google Scholar 

  17. Lee IT, Yang CM. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem Pharmacol, 2012,84 (5):581–590

    Article  CAS  PubMed  Google Scholar 

  18. Hsieh HL, Yang CM. Role of redox signaling in neuroinflammation and neurodegenerative diseases. BioM Res Int, 2013,2013(4):1–18

    Google Scholar 

  19. Moore AH, O’Banion MK. Neuroinflammation and anti-Inflammatory therapy for Alzheimer’s Disease. Adv Drug Delivery Rev, 2002,54(12):1627–1656

    Article  CAS  Google Scholar 

  20. Erickson MA, Hansen K, Banks WA. Inflammation-induced dysfunction of the low-density lipoprotein receptor-related protein-1 at the blood–brain barrier: Protection by the antioxidant N-acetylcysteine. Brain Behav Immun, 2012,26(7):1085–1094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Martínez ML, Labuckas DO, Lamarque AL, et al. Walnut (Juglans regia L.): genetic resources, chemistry, by-products. J Sci Food Agri, 2010,90(12):1393–1401

    Google Scholar 

  22. Kar Wai Clara Sze-Tao, Shridhar KS. Walnuts (Juglans regia L): proximate composition, protein solubility, protein amino acid composition and protein in vitro digestibility. J Sci Food Agri, 2000,80(9):1393–1401

    Article  Google Scholar 

  23. Poulose SM, Miller MG, Shukitt-Hale B. Role of walnuts in maintaining brain health with age. J Nutr, 2014,144(4):561S-566S

    Google Scholar 

  24. Muthaiyah B, Essa MM, Lee M, et al. Dietary Supplementation of walnuts improves memory deficits and learning skills in transgenic mouse model of Alzheimer’s disease. J AD, 2014,42(4):1397–1405

    CAS  Google Scholar 

  25. Willis LM, Shukitt-Hale B, Joseph JA. Modulation of cognition and behavior in aged animals: role for antioxidant-and essential fatty acid-rich plant foods. Am J Clin Nutr, 2009,89(5):1602S-1606S

    Google Scholar 

  26. Pribis P, Bailey RN, Russell AA, et al. Effects of walnut consumption on cognitive performance in young adults. Brit J Nutr, 2011,107(09):1393–1401

    Article  PubMed  Google Scholar 

  27. Willis LM, Shukitt-Hale B, Cheng V, et al. Dose-dependent effects of walnuts on motor and cognitive function in aged rats. Brit J Nutr, 2009,101(8):1140–1144

    Article  CAS  PubMed  Google Scholar 

  28. Gu M, Chen H P, Zhao MM, et al. Identification of antioxidant peptides released from defatted walnut (Juglans Sigillata Dode) meal proteins with pancreatin. LWT-Food Sci Technol, 2015,60(60):213–220

    Article  CAS  Google Scholar 

  29. Lee YW, Kim DH, Jeon SJ, et al. Neuroprotective effects of salvianolic acid B on an Aβ25–35 peptide-induced mouse model of Alzheimer’s disease. Eur J Pharmacol, 2013,704:70–77

    Article  CAS  PubMed  Google Scholar 

  30. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Meth, 1984,11(1):47–60

    Article  CAS  Google Scholar 

  31. Wei H, Wu G, Chen J, et al. (2S)-5, 2', 5'-Trihydroxy-7-methoxyflavanone, a natural product from Abacopteris penangiana, presents neuroprotective effects in vitro and in vivo. Neurochem Res, 2013,38(8):1686–1694

    Article  CAS  PubMed  Google Scholar 

  32. Liu Z, Zhao X, Liu B, et al. Jujuboside A, a neuroprotective agent from semen Ziziphi Spinosae ameliorates behavioral disorders of the dementia mouse model induced by Aβ1–42. Eur J Pharmacol, 2014,738:206–213

    Article  CAS  PubMed  Google Scholar 

  33. Fu W, Lei Y, Chen J, et al. Parathelypteriside attenuates cognition deficits in d-galactose treated mice by increasing antioxidant capacity and improving long-term potentiation. Neurobio Learn Mem, 2010,94(3):414–421

    Article  CAS  Google Scholar 

  34. Rubio J, Dang H, Gong M, et al. Aqueous and hydroalcoholic extracts of Black Maca (Lepidium meyenii) improve scopolamine-induced memory impairment in mice. Food Chem Toxicol, 2007,45(10):1882–1890

    Article  CAS  PubMed  Google Scholar 

  35. Yankner BA, Duffy LK, Kirschner DA. Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science, 1990,250(4978):279–282

    Article  CAS  PubMed  Google Scholar 

  36. Delobette S, Privat A, Maurice T. In vitro aggregation facilitates β-amyloid peptide-(25-35)-inducedamnesia in the rat. Eur J Pharmacol, 1997,319(1):1–4

    Article  CAS  PubMed  Google Scholar 

  37. Gulyaeva NV, Victorov IV, Stepanichev MY, et al. Intracerebroventricular administration of beta-amyloid peptide (25-35) induces oxidative stress and neurodegeneration in rat brain. Adv Behav Biol, 1998,49:89–98

    Article  CAS  Google Scholar 

  38. Oliveira MG M, BuenoOF A, PomaricoAC, et al. Strategies used by hippocampal-and caudate-putamen-lesioned rats in a learning task. Neurobiol Learn Mem, 1997,68 (1):32–41

    Article  CAS  PubMed  Google Scholar 

  39. Sultana R, Butterifield DA. Role of oxidative stress in the progression of Alzheimer’s Disease. JAD, 2010,19(Suppl 2):341–353

    PubMed  Google Scholar 

  40. Tayler H, Fraser T, Miners JS, et al. Oxidative balance in Alzheimer’s Disease: relationship to APOE, Braak tangle stage, and the concentrations of soluble and insoluble amyloid-β. JAD, 2010,22(4):1363–1373

    CAS  PubMed  Google Scholar 

  41. Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptideassociated free radical oxidative stress. Free Radical Bio-Med, 2002, 32:1050–1060

    Article  CAS  Google Scholar 

  42. Gardner AM, Xu FH, Fady C, et al. Apoptotic vs. nonapoptotic cytotoxicity induced by hydrogen peroxide. Free Radical BioMed, 1997,22 (1–2):73–83

    Article  CAS  Google Scholar 

  43. Fiers W, Beyaert R, Declercq W, et al. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene, 1999,18(54):7719–7730

    Article  CAS  PubMed  Google Scholar 

  44. Miller DB, O’Callaghan JP. Aging, stress and the hippocampus. Ageing Res Rev, 2005,4(2):123–140

    Article  CAS  PubMed  Google Scholar 

  45. Yargicoglu P, Sahin E, Gümüslü S, et al. The effect of sulfur dioxide inhalation on active avoidance learning, antioxidant status and lipid peroxidation during aging. Neurotoxicol Teratol, 2007,29(2):211–218

    Article  CAS  PubMed  Google Scholar 

  46. Butterfield DA. Proteomics: a new approach to investigate oxidative stress in Alzheimer’s disease brain. Brain Res, 2004,1000(1–2):1–7

    Article  CAS  PubMed  Google Scholar 

  47. Zampagni M, Wright D, Cascella R, et al. Novel S-acyl glutathione derivatives prevent amyloid oxidative stress and cholinergic dysfunction in Alzheimer disease models. Free Radical BioMed, 2012,52(8):1362–1371

    Article  CAS  Google Scholar 

  48. Mecocci P, MacGarvey U, Kaufman AE, et al. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol, 1993, 34(4):609–616

    Article  CAS  PubMed  Google Scholar 

  49. Mamelak M. Alzheimer’ s disease, oxidative stress and gammahydroxybutyrate. Neurobiol Aging, 2007,28(9): 1340–1360

    Article  CAS  PubMed  Google Scholar 

  50. Rall L C, Roubenoff R, Meydani SN, et al. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a marker of oxidative stress in rheumatoid arthritis and aging: effect of progressive resistance training. J Nutr Biochem, 2000,11(11–12):581–584 (4)

    Article  CAS  PubMed  Google Scholar 

  51. Holmes C, Cunningham C, Zotova E, et al. Systemic inflammation and disease progression in Alzheimer disease. Retour Au Numéro, 2009,73(14):768–774

    CAS  Google Scholar 

  52. Zhu H, Jia Z, Misra H, et al. Oxidative stress and redox signaling mechanisms of alcoholic liver disease: Updated experimental and clinical evidence. J Digest Dis, 2012,13(3):133–142

    Article  Google Scholar 

  53. Heneka M, Obanion M. Inflammatory processes in Alzheimer’s disease. J Neuroimmunol, 2007,184(1):69–91

    Article  CAS  PubMed  Google Scholar 

  54. Xia W, Li D W, Xiang L, et al. Neuroprotective effects of an aqueous extract of futokadsura stem in an Aβ-induced Alzheimer’s disease-like rat model. Chinese J Physiol, 2015,58(2):104–113

    Article  Google Scholar 

  55. Clark IA, Alleva LM, Vissel B. The roles of TNF in brain dysfunction and disease. Pharmacol Therapeut, 2010,128(3):519–548

    Article  CAS  Google Scholar 

  56. Heyser CJ, Masliah E, Samimi A, et al. Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. P Natl Acad Sci, 1997,94(4):1500–1505

    Article  CAS  Google Scholar 

  57. Huell M, Strauss S, Volk B, et al. Interleukin-6 is present in early stages of plaque formation and is restricted to the brains of Alzheimer’s disease patients. Acta Neuropathol, 1995,89(6):544–551

    Article  CAS  PubMed  Google Scholar 

  58. Liu L, Chan C. The role of inflammasome in Alzheimer’s disease. Ageing Res Rev, 2014,15:6–15

    Article  CAS  PubMed  Google Scholar 

  59. García-Ayllón MS, Silveyra MX, Sáez-Valero J. Aβsociation between acetylcholinesterase and β-amyloid peptide in Alzheimer’s cerebrospinal fluid. Chem-Biol Interact, 2008,175(1–3):209–215

    Article  PubMed  Google Scholar 

  60. Melo JB, Agostinho P, Oliveira CR. Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neurosci Res, 2003,45(1):117–127

    Article  CAS  PubMed  Google Scholar 

  61. Diaz A, Mendieta L, Zenteno E, et al. The role of NOS in the impairment of spatial memory and damaged neurons in rats injected with amyloid beta 25–35 into the temporal cortex. Pharmacol Biochem Be, 2011,98(1):67–75

    Article  CAS  Google Scholar 

  62. Law A, Gauthier S, Quirion R. Say NO to Alzheimer's disease: the putative links between nitric oxide and dementia of the Alzheimer’s type. Brain Res Rev, 2001,35 (1):73–96

    Article  CAS  PubMed  Google Scholar 

  63. Singleton AB, Gibson AM, Mckeith IG, et al. Nitric oxide synthase gene polymorphisms in Alzheimer’s disease and dementia with Lewy bodies. Neurosci Lett, 2001,303(1): 33–36

    Article  CAS  PubMed  Google Scholar 

  64. Guo LY, Hung TM, Bae KH, et al. Anti-inflammatory effects of schisandrin isolated from the fruit of Schisandra chinensis Baill. EurJ Pharmacol, 2008,591(1–3):293–299

    Article  CAS  Google Scholar 

  65. Yuan Q, Zhang X, Liu Z, et al. Ethanol extract of Adiantum capillus-veneris L. suppresses the production of inflammatory mediators by inhibiting NF-κB activation. J Ethnopharmacol, 2013,147(3):603–611

    Article  CAS  PubMed  Google Scholar 

  66. Wang H, Wu T, Qi J, et al. Salidroside attenuates LPS-stimulated activation of THP-1 cell-derived macrolhages through down-regulation of MAPK/NF-kB signaling pathways. J Huazhong Univ Sci Technol [Med Sci], 2013,33(4):463–469

    Article  CAS  Google Scholar 

  67. Zhang ZH, Yu LJ, Hui XC, et al. Hydroxy-safflor Yellow A attenuates Aβ1–42-induced inflammation by modulating the JAK2/STAT3/NF-κB pathway. Brain Res, 2014:72–80

    Google Scholar 

  68. Wang C, Li J, Liu Q, et al. Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-κB activation in a rat model of amyloid-beta-induced Alzheimer’s disease. Neurosci Lett, 2011,491(2):127–132

    Article  CAS  PubMed  Google Scholar 

  69. Luo Y, Yang Y P, Liu J, et al. Neuroprotective effects of madecassoside against focal cerebral ischemia reperfusion injury in rats. Brain Res, 2014,1565(20):37–47

    Article  CAS  PubMed  Google Scholar 

  70. Lee SY, Lee JW, Lee H, et al. Inhibitory effect of green tea extract on β-amyloid-induced PC12 cell death by inhibition of the activation of NF-κB and ERK/p38 MAP kinase pathway through antioxidant mechanisms. Mol Brain Res, 2005,140(1–2):45–54

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-lan Ruan  (阮金兰).

Additional information

This research was supported by the grants from the National Nature Science Foundation of China (No. 81173065) and Wuhan Science and Technology Plan Foundation (No. 2012605-23182).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Cai, Ps., Xiong, Cm. et al. Neuroprotective effect of peptides extracted from walnut (Juglans Sigilata Dode) proteins on Aβ25-35-induced memory impairment in mice. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 36, 21–30 (2016). https://doi.org/10.1007/s11596-016-1536-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-016-1536-4

Key words

Navigation