Skip to main content

Advertisement

Log in

Development and application of expanded polypropylene foam

  • Organic materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The products of expanded polypropylene(EPP) is widely explored and used. the PP modification methods, the preparation methods of EPP and the molding technology of EPP were reviewed. The application of EPP in the field of sporting equipment were also discussed. This paper may provide theoretical foundation for the applications and developments of EPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sauceau M, Fages J, Common A, et al. New Challenges in Polymer Foaming: A Review of Extrusion Processes Assisted by Supercritical Carbon Dioxide[J]. Prog. Polym. Sci., 2011, 36(6): 749–766

    Article  CAS  Google Scholar 

  2. Chen L, Rende D, Schadler LS, Ozisik R. Polymer Nanocomposite Foams[J]. J. Mater. Chem. A, DOI:10.1039/C2TA00086E

  3. Sorrentino L, Aurilia M, Iannace S. Polymeric Foams from High-Performance Thermoplastics[J]. Adv. Polym. Tech., 2011, 30(3): 234–243

    Article  CAS  Google Scholar 

  4. Gautam R, Bassi AS, Yanful EK. A Review of Biodegradation of Synthetic Plastic and Foams[J]. Appl. Biochem. Biotech., 2007, 141: 85–108

    Article  CAS  Google Scholar 

  5. Robeson LM. Environmental Stress Cracking: A Review[J]. Polym. Eng. Sci., DOI: 10.1002/pen.23284

  6. Park CH, Garcia GA. Development of Polypropylene Plank Foam Products[J]. J. Cell. Plast. 2002, 38: 219–228

    Article  CAS  Google Scholar 

  7. Liu H, Chuai C, Iqbal M, et al. Improving Foam Ability of Polypropylene by Crosslinking[J]. J. Appl. Polym. Sci., 2011,122(2): 973–980

    Article  CAS  Google Scholar 

  8. Viot P, Beani F, Lataillade JL. Polymeric Foam Behavior under Dynamic Compressive Loading[J]. J. Mater. Sci., 2005, 40(22): 5 829–5 837

    Article  CAS  Google Scholar 

  9. Park CB, Cheung LK. A Study of Cell Nucleation in the Extrusion of Polypropylene Foams[J]. Polym. Eng. Sci., 1997, 37(1):1–10

    Article  CAS  Google Scholar 

  10. Li S, Xiao M, Guan Y, et al. A Novel Strategy for The Preparation of Long Chain Branching Polypropylene and the Investigation on Foamability and Rheology[J]. Eur. Polym. J., 2012, 48(2): 362–371

    Article  CAS  Google Scholar 

  11. Stadlbauer M, Ernst E. Polypropylene Foam[P]. EP Patent: 1900764, 2009

    Google Scholar 

  12. Hoog SM, Seo Y. Crystallization of a Polypropylene Terpolymer Made by a Ziegler?Natta Catalyst Formation of γ-phase[J]. J. Phys. Chem. B, 2007, 111: 3 571–3 575

    Google Scholar 

  13. Cheng S, Phillips E, Parks L. Processability Improvement of Polyolefins Through Radiation-Induced Branching[J]. Radiat. Phys. Chem., 2010, 79(3): 329–334

    Article  CAS  Google Scholar 

  14. Yoshiga A, Otaguro H, Parra DF, et al. Controlled Degradation and Crosslinking of Polypropylene Induced by Gamma Radiation and Acetylene[J]. Polym. Bull., 2009, 63(3): 397–409

    Article  CAS  Google Scholar 

  15. Manaila E, Daniela M, Craciu G. Aspects Regarding Radiation Crosslinking of Elastomers[OL]. http://dx.doi.org/10.5772/47747, 2012

    Google Scholar 

  16. Suljovrujic E. The Influence of Molecular Orientation on the Crosslinking/Oxidative Behaviour of ipp Exposed to Gamma Radiation[J]. Eur. Polym. J., 2009, 45: 2 068–2 078

    Article  CAS  Google Scholar 

  17. Gao J, Lu Y, Wei G, Zhang X, et al. Effect of Radiation on the Crosslinkin gand Branching of Polypropylene[J]. J. Appl. Polym. Sci., 2002, 85: 1 758–1 764

    Article  CAS  Google Scholar 

  18. Muñoz-Muñoz F, Ruiz J-C, Alvarez-Lorenzo C, et al. Temperature and pH-Sensitive Interpenetrating Polymer Networks Grafted on PP: Cross-Linking Irradiation Dose as a Critical Variable for the Performance as Vancomycin-Eluting Systems[J]. Radiat. Phys. Chem., 2012, 81(5): 531–540

    Article  Google Scholar 

  19. Rajeshbabu R, Gohs U, Naskar K, et al. Preparation of Polypropylene (PP)/Ethylene Octene Copolymer (EOC) Thermoplastic Vulcanizates (Tpvs) by High Energy Electron Reactive Processing[J]. Radiat. Phys. Chem., 2011, 80(12): 1 398–1 405

    Article  CAS  Google Scholar 

  20. Babu RR, Singha NK, Naskar K. Melt Viscoelastic Properties of Peroxide Cured Polypropylene-Ethylene Octene Copolymer Thermoplastic Vulcanizates[J]. Polym. Eng. Sci., 2010, 50(3): 455–467

    Article  CAS  Google Scholar 

  21. Babu RR, Singha NK, Naskar K. Dynamically Vulcanized Blends of Polypropylene and Ethylene Octene Copolymer: Influence of Various Coagents on Thermal and Rheological Characteristics[J]. J. Appl. Polym. Sci., 2010, 117(3): 1 578–1 590

    CAS  Google Scholar 

  22. Okura T, Kourogl M, Fukui Y, et al. Foam Made from Modified Polyproptlene Resin and Process for the Production Thereof[P]. EP Patent: 0841354 B1, 2003

    Google Scholar 

  23. Okura T, Kourogl M, Fukui Y, et al. Foam Made from Modified Polypropylene Resin and Process for the Production Thereof[P]. US Patent: 6077878, 2000

    Google Scholar 

  24. Chaudhary BI, Sengupta SS, Cogen JM, et al. Silane Grafting and Moisture Crosslinking of Polypropylene[J]. Polym. Eng. Sci., 2011, 51(2): 237–246

    Article  CAS  Google Scholar 

  25. Song G, Yang S, Yang C, et al. Foaming Polypropylene Prepared by a Novel One-Step Silane-Grafting and Crosslinking Method[J]. J. Porous Mater., 2006, 13(3–4): 297–301

    Article  CAS  Google Scholar 

  26. Wang Z, Wu X, Gui Z, et al. Thermal and Crystallization Behavior of Silane-Crosslinked Polypropylene[J]. Polym. Int., 2005, 54(2): 442–447

    Article  CAS  Google Scholar 

  27. Liu NC, Yao GP, Huang H. Influences of Grafting Formulations and Processing Conditions on Properties of Silane Grafted Moisture Crosslinked Polypropylenes[J]. Polymer, 2000, 41: 4 537–4 542

    CAS  Google Scholar 

  28. Yang S, Song G, Zhao Y, et al. Mechanism of a One-Step Method for Preparing Silane Grafting and Cross-Linking Polypropylene[J]. Polym. Eng. Sci., 2007, 47(7): 1 004–1 008

    CAS  Google Scholar 

  29. Teh JW, Rudin A, Keung JC. A Review of Polyethylene-Polypropylene Blends and Their Compatibilization[J]. Adv. Polym. Tech., 1994, 13(1): 1–23

    Article  CAS  Google Scholar 

  30. Liu C, Jiang X-L, Liu T, et al. Multifractal Analysis of the Fracture Surfaces of Foamed Polypropylene/Polyethylene Blends[J]. Appl. Surf. Sci., 2009, 255(7): 4 239–4 245

    CAS  Google Scholar 

  31. Zhang P, Wang XJ, Yang Y, et al. Effect of Dynamic Shear on the Microcellular Foaming of Polypropylene/High-Density Polyethylene Blends[J]. J. Appl. Polym. Sci., 2009, 114(2): 1 320–1 328

    CAS  Google Scholar 

  32. Liang JZ, Li RK. Rubber Toughening in Polypropylene: A Review[J]. J. Appl. Polym. Sci., 2000, 77: 409–417

    Article  CAS  Google Scholar 

  33. Chen YK, Xu CH, Wang YP. Preparation and Properties of Peroxide Dynamically Vulcanized Polypropylene/Ethylene-Propylene-Diene Monomer/Zinc Dimethacrylate Thermoplastic Olefin[J]. Polym. Eng. Sci., 2013, 53(1): 27–33

    Article  CAS  Google Scholar 

  34. Chen Y, Xu C, Cao L, et al. PP/EPDM-Based Dynamically Vulcanized Thermoplastic Olefin with Zinc Dimethacrylate: Preparation, Rheology, Morphology, Crystallization and Mechanical Properties[J]. Polym. Test., 2012, 31(6): 728–736

    Article  CAS  Google Scholar 

  35. Brostow W, Datashvili T, Hackenberg KP. Effect of Different Types of Peroxides on Properties of Vulcanized EPDM + PP Blends[J]. Polym. Composite., 2010, 31(10): 1 678–1 691

    Article  CAS  Google Scholar 

  36. Huang HX, Xu HF. Preparation of Microcellular Polypropylene/ Polystyrene Blend Foams with Tunable Cell Structure[J]. Polym. Adv. Tech., 2011, 22(6): 822–829

    Article  CAS  Google Scholar 

  37. Zhang S, Rodrigue D, Riedl B. Preparation and Morphology of Polypropylene/Wood Flour Composite Foams via Extrusion[J]. Polym. Composite., 2005, 26(6): 731–738

    Article  CAS  Google Scholar 

  38. Bledzki AK, Faruk O. Injection Moulded Microcellular Wood Fibre-Polypropylene Composites[J]. Compos. Part A-Appl. S., 2006, 37(9):1 358–1 367

    Article  Google Scholar 

  39. Rachtanapun P, Selke SEM, Matuana LM. Microcellular Foam of Polymer Blends of HDPE/PP and Their Composites with Wood Fiber[J]. J. Appl. Polym. Sci., 2003, 88: 2 842–2 850

    Article  CAS  Google Scholar 

  40. Ding J, Shangguan JA, Ma W, et al. Foaming Behavior of Microcellular Foam Polypropylene/Modified Nano Calcium Carbonate Composites[J]. J. Appl. Polym. Sci., 2012, DOI: 10.1002/app.38416

    Google Scholar 

  41. Zheng WG, Lee YH, Park CB. Use of Nanoparticles for Improving the Foaming Behaviors of Linear PP[J]. J. Appl. Polym. Sci., 2010, 117(5):2 972–2 979

    CAS  Google Scholar 

  42. Dukhan N, Rayess N, Hadley J. Characterization of Aluminum Foam-Polypropylene Interpenetrating Phase Composites: Flexural Test Results[J]. Mech. Mater., 2010, 42(2): 134–141

    Article  Google Scholar 

  43. Jiang XL, Liu T, Xu ZM, et al. Effects of Crystal Structure on the Foaming of Isotactic Polypropylene using Supercritical Carbon Dioxide as a Foaming Agent[J]. J. Supercrit. Fluid., 2009, 48(2): 167–175

    Article  CAS  Google Scholar 

  44. Bao JB, Liu T, Zhao L, et al. Carbon Dioxide Induced Crystallization for Toughening Polypropylene[J]. Ind. Eng. Chem. Res., 2011, 50(16):9 632–9 641

    Article  CAS  Google Scholar 

  45. Park CP. Extruded Open-Cell Propylene polymer Foam and Process for Making Same[P]. EP Patent: 0674579 B2, 2004

    Google Scholar 

  46. Yu C, Wang Y, Wu B, et al. Evaluating the Foamability of Polypropylene with Nitrogen as the Blowing Agent[J]. Polym. Test., 2011, 30(8): 887–892

    Article  CAS  Google Scholar 

  47. Musgrave M, Ashbaugh J, Lu AK. Foamed Polypropylene with Improved Cell Structure[P]. EP Patent: 1676874 B1, 2011

    Google Scholar 

  48. Landrock AH. Handbook of Plastic Foams: Types, Pproperties, Manufacture, and Aapplications[M]. US: Noyes Publications, 1995, 24–30

    Google Scholar 

  49. Xu Z. Effects of Formulations and Processing Parameters on Foam Morphologies in the Direct Extrusion Foaming of Polypropylene using a Single-screw Extruder[J]. J. Cell. Plast., 2005, 41(2): 169–185

    Article  CAS  Google Scholar 

  50. Chien RD. Study on the Molding Characteristics and Mechanical Properties of Injection-molded Foaming Polypropylene Parts[J]. J. Reinf. Plast. Comp., 2004, 23: 429–444

    Article  CAS  Google Scholar 

  51. Ishikawa T, Ohshima M. Visual Observation And Numerical Studies of Polymer Foaming Behavior of Polypropylene/Carbon Dioxide System in a Core-Back Injection Molding Process[J]. Polym. Eng. Sci., 2011, 51(8): 1 617–1 625

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiqiang Zhu  (朱其锵).

Additional information

Funded by the Development Strategy Project of Hubei (20120014)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L., Zhu, Q. & Yu, J. Development and application of expanded polypropylene foam. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 28, 373–379 (2013). https://doi.org/10.1007/s11595-013-0698-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-013-0698-1

Key words

Navigation