Skip to main content
Log in

Bi-objective dynamic optimization of a nonlinear time-delay system in microbial batch process

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we propose a bi-objective dynamic optimization model involving a nonlinear time-delay system to optimize the 1,3-propanediol (1,3-PD) production in a microbial batch process, where the productivity of 1,3-PD and the consumption rate of glycerol are taken as the two objectives. The initial concentrations of biomass and glycerol, and the terminal time of the process are the decision variables. By a time-scaling transformation, we first transform the problem to the one with fixed terminal time but involving a new system with variable time-delay. The normalized normal constraint method is then used to convert the resulting problem into a sequence of single-objective dynamic optimization problems. A gradient-based optimization method incorporating the constraint transcription technique is developed to solve each of these single-objective dynamic optimization problems. Finally, numerical results are provided to demonstrate the effectiveness of the proposed solution method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Biebl, H., Menzel, K., Zeng, A.P., Deckwer, W.D.: Microbial production of 1,3-propanediol. Appl. Microbiol. Biotechnol. 52, 289–297 (1999)

    Article  Google Scholar 

  2. Chen, G., Wang, L., Loxton, R., Lin, Q.: Robust optimal control of a microbial batch culture process. J. Optim. Theory Appl. 167, 342–362 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng, K., Liu, H., Liu, D.: Multiple growth inhibition of Klebsiella pneumoniae in 1,3-propanediol fermentation. Biotechnol. Lett. 27, 19–22 (2005)

    Article  Google Scholar 

  4. Dai, C., Wang, Y., Ye, M.: A new multi-objective particle swarm optimization algorithm based on decomposition. Inf. Sci. 325, 541–557 (2015)

    Article  Google Scholar 

  5. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8, 631–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eichfelder, G.: An adaptive scalarization method in multiobjective optimization. SIAM J. Optim. 19, 1694–1718 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. G\(\ddot{\text{u}}\)nzel, B.: Mikrobielle herstellung von 1,3-propandiol durch Clostridium butyricum und adsorptive Aufarbeitung von Diolen. Ph.D. Dissertation, TU Braunschweig (1991)

  8. Hale, J.K., Verduyn Lune, S.M.: Introduction to Functional-Differential Equations. Springer, Berlin (1993)

  9. Hillermeier, C., Jahn, J.: Multiobjective optimization: survey of methods and industial applications. Surv. Math. Ind. 11, 1–42 (2005)

    MATH  Google Scholar 

  10. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Safe 91, 992–1007 (2006)

    Article  Google Scholar 

  11. Liu, C.: Modelling and parameter identification for a nonlinear time-delay system in microbial batch fermentation. Appl. Math. Model. 37, 6899–6908 (2013)

    Article  MathSciNet  Google Scholar 

  12. Liu, C., Loxton, R., Teo, K.L.: A computational method for solving time-delay optimal control problems with free terminal time. Syst. Control Lett. 72, 53–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Logist, F., Houska, B., Diehl, M., Van Impe, J.: Fast Pareto set generation for nonlinear optimal control problems with multiple objectives. Multidiscip. Optim. 42, 591–603 (2010)

    Article  MATH  Google Scholar 

  14. Menzel, K., Zeng, A.P., Deckwer, W.D.: High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella Pneumoniae. Enzyme Microb. Technol. 20, 82–86 (1997)

    Article  Google Scholar 

  15. Messac, A., Ismail-Yahaya, A., Mattson, C.A.: The normalized normal constraint method for generating the Pareto frontier. Struct. Multidiscip. Optim. 25, 86–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Messac, A., Mattson, C.: Normal constraint method with guarantee of even representation of complete Pareto frontier. AIAA J. 42, 2101–2111 (2004)

    Article  Google Scholar 

  17. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  18. Schittkowski, K.: NLPQLP: a Fortran implementation of a sequential quadratic programming algorithm with distributed and non-monotone line search - user’s guide. University of Bayreuth, Bayreuth (2007)

    Google Scholar 

  19. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, New York (1980)

    Book  MATH  Google Scholar 

  20. Sun, Y.Q., Qi, W., Teng, H., Xiu, Z.L., Zeng, A.P.: Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae: concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane. Biochem. Eng. J. 38, 22–32 (2008)

    Article  Google Scholar 

  21. Teo, K.L., Goh, C.J., Wong, K.H.: A Unified Computational Approach to Optimal Control Problems. Longman Scientific and Technical, Essex (1991)

    MATH  Google Scholar 

  22. Xiu, Z.L., Song, B.H., Sun, L.H., Zeng, A.P.: Theoretical analysis of effects of metabolic overflow and time delay on the performance and dynamic behavior of a two-stage fermentation process. Biochem. Eng. J. 11, 101–109 (2002)

    Article  Google Scholar 

  23. Xiu, Z.L., Zeng, A.P., An, L.J.: Mathematical modelling of kinetics and research on multiplicity of glycerol bioconversion to 1,3-propanediol. J. Dalian Univ. Technol. 40, 428–433 (2000)

    Google Scholar 

  24. Yu, Y.S.: Optimal control of a nonlinear time-delay system in batch fermentation process. Math. Probl. Eng. 2014, Article ID 478081 (2014)

  25. Yuan, J.L., Zhang, X., Zhu, X., Feng, E.M., Xiu, Z.L.: Pathway identification using parallel optimization for a nonlinear hybrid system in batch culture. Nonlinear Anal. Hybrid Syst. 15, 112–131 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zadeh, L.: Optimality and non-scalar-valued performance criteria. IEEE Trans. Autom. Control 8, 59–60 (1963)

    Article  Google Scholar 

  27. Zeng, A.P., Biebl, H.: Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv. Biochem. Eng. Biotechnol. 74, 239–259 (2002)

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (No. 11201267), the Shandong Provincial Natural Science Foundation of China (Nos. ZR2015AL010, ZR2014FM029, ZR2015PG006, ZR2013AQ022) and the Australian Research Council (No. DP140100289).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongyang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Gong, Z., Teo, K.L. et al. Bi-objective dynamic optimization of a nonlinear time-delay system in microbial batch process. Optim Lett 12, 1249–1264 (2018). https://doi.org/10.1007/s11590-016-1105-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-016-1105-6

Keywords

Navigation