Skip to main content
Log in

Structural, theoretical, and experimental study of AC electrical conduction mechanism and thermodynamic properties of Cu0.6Cd0.4Cr2O4 spinel oxide

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, Cu0.6Cd0.4Cr2O4 spinel oxide was synthesized by means of sol–gel auto-combustion route. The refined X-ray powder diffraction pattern confirmed the single-phase formation of the material, which crystallized in a cubic spinel structure with space group Fd-3 m. The alternating current conduction mechanism and modulus behavior of this sample were investigated over a broad frequency range (from 100 Hz to 1.6 MHz) for various temperatures ranging from 300 to 660 K. Two equivalent circuit models, R//C//CPE below 440 K and above this temperature R1//C1//CPE1 in series with R2//CPE2, were applied to fit the impedance data. The temperature dependence of the direct current conductivity could be described in terms of Arrhenius relation with four activation energies, 1.8 eV, 0.76 eV, 0.80 eV, and 0.98 eV, in regions I (T < 360 K); II (360–420 K); III (440–500 K); and IV (T > 500 K), respectively. The temperature and frequency dependence of AC conductivity was found to satisfy Jonscher’s law (developed) at different temperatures. The variation of the exponent “s” with temperature strongly suggests that the conduction mechanism takes place by correlated barrier hopping (CBH) model in each region. A theoretical study of (AC) electrical conduction in this material has been interpreted using Elliot’s theory, and Elliot’s parameters are determined. For the modulus formalism, the extracted activation energies from the linear fit of ln(fp) as a function of 1000/T match well with those obtained from DC conductivity confirming that transport mechanisms were based on hopping phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ponpandian N, Balaya P, Narayanasamy A (2002) Electrical conductivity and dielectric behaviour of nanocrystalline NiFe2O4 spinel. J Phys: Condens Matter 14:3221–3237

    CAS  Google Scholar 

  2. Xu X, Gao J, Hong W (2016) Ni-based chromite spinel for high-performance supercapacitors. RSC Adv 6(35):29646–29653

    Article  CAS  Google Scholar 

  3. Choudhary P, Varshney D (2018) Elucidation of structural, vibrational and dielectric properties of transition metal (Co2+) doped spinel Mg-Zn chromites. J Mag Mag Mat 454:274–288

    Article  CAS  Google Scholar 

  4. Edrissi M, Hosseini SA, Soleymani M (2011) Synthesis and characterisation of copper chromite nanoparticles using coprecipitation Method. Micro Nano Lett 6:836–839

    Article  CAS  Google Scholar 

  5. Acharyya SS, Ghosh S, Adak S, Tripathi D, Bal R (2015) Fabrication of CuCr2O4 spinel nanoparticles: a potential catalyst for the selective oxidation of cycloalkanes via activation of Csp3–H bond. Materials Science Catalysis Communications 59:145–150

    Article  CAS  Google Scholar 

  6. Bakar SA, Saion E, Bahrami A, Soltani N, Zare MR (2019) Up-scalable fabrication of nanosized nickel cobalt chromite spinel by a simple thermal treatment method: structural and paramagnetic behavior. J Phys Chem Solid 128:378

    Article  CAS  Google Scholar 

  7. Ma P, Geng Q, Gao X, Yang S, Liu G (2016) CuCr2O4 spinel ceramic pigments synthesized by sol-gel self-combustion method for solar absorber coatings. J Mater Eng Perform 25:2814–2823

    Article  CAS  Google Scholar 

  8. Bhagwat VR, Humbe Ashok V, More SD (2019) Jadhav K M (2019) Sol-gel auto combustion synthesis and characterizations of cobalt ferrite nanoparticles: different fuels approach. Mater Sci Eng, B 248:114388–114393

    Article  CAS  Google Scholar 

  9. Xu X, Gao J, Hong W (2016) Ni-based chromite spinel for high performance supercapacitors. RSC Adv 6(35):29646–29653

    Article  CAS  Google Scholar 

  10. Stefan E, Irvine JTS (2011) Synthesis and characterization of chromium spinels as potential electrode support materials for intermediate temperature solid oxide fuel cells. J Mater Sci 46(22):7191–7197

    Article  CAS  Google Scholar 

  11. Liu J, Zhao Y, Li X, Wang C, Zeng Y, Yue G, Chen Q (2018) CuCr2O4@rGO nanocomposites as high-performance cathode catalyst for rechargeable lithium–oxygen batteries. Nano-Micro Lett 22:1–10

    Google Scholar 

  12. Lawes G, Melot B, Page K, Ederer C, Hayward MA, Proffen Th, Seshadri R (2006) Dielectric anomalies and spiral magnetic order in CoCr2O4. Phys Rev B 74:024413–024418

    Article  CAS  Google Scholar 

  13. Acharyya SS, Ghosh S, Tiwari R, Sarkar B, Kumar Singha R, Pendem C, Sasakib T, Bal R (2014) Preparation of the CuCr2O4 spinel nanoparticles catalyst for selective oxidation of toluene to benzaldehyde. Green Chem 16:2500–2508

    Article  CAS  Google Scholar 

  14. Sathiskumar PS, Thomas CR, Madras G (2012) Solution combustion synthesis of nanosized copper chromite and its use as a burn rate modifier in solid propellants. Ind Eng Chem Ress 15:10108–10116

    Article  CAS  Google Scholar 

  15. Pan L, Li L, Bao X (2012) Chen Y (2012) Highly photocatalytic activity for p-nitrophenol degradation with spinel-structured CuCr2O4. Micro and Nano Letters 7:415–418

    Article  Google Scholar 

  16. Bolandhemat N, Rahman M, Shuaibu A (2016) Structural, electronic and magnetic properties of geometrically frustrated spinel CdCr2O4 from first-principles based on density functional theory. Journal of Material Science and Engineering 5:4–9

    Google Scholar 

  17. Rabia K, Baldassarre L, Deisenhofer J, Tsurkan V, Kuntscher CA (2014) Evolution of the optical properties of chromium spinels CdCr2O4, HgCr2S4, and ZnCr2Se4 under high pressure. Phys Rev B 89:125107–125115

    Article  CAS  Google Scholar 

  18. Manova E, Tsoncheva T, Estournes C, Paneva D, Tenchev K, Mitov I, Petrov L (2006) Nanosized iron and iron–cobalt spinel oxides as catalysts for methanol decomposition. Appl Catal A-Gen 300:170–180

    Article  CAS  Google Scholar 

  19. Hcini F, Hcini S, Wederni MA, Alzahrani B, Al RH, Khirouni K, Zemni S, Bouazizi ML (2022) Structural, optical, and dielectric properties for Mg0·6Cu0·2Ni0·2Cr2O4 chromite spinel. Physica B: Physics of Condensed Matter 624:413439–413452

    Article  CAS  Google Scholar 

  20. Rejaiba O, Hcini F, Nasri M, Hcini S, Alzahrani B, Bouazizi ML, Hlil EK, Khelifi J, Khirouni K, Dhahri E (2021) Structural, dielectric and electrical properties of sol–gel auto-combustion technic of CuFeCr0.5Ni0.5O4 ferrite. J Mater Sci 56:16044–16058

    Article  CAS  Google Scholar 

  21. Silva JB, de Brito W, Mohallem NDS (2004) Influence of heat treatment on cobalt ferrite ceramic powders, Materials Science Engineering B: Solid-State Materials for Advanced Technology. Mater Sci Eng B 112:182–187

    Article  CAS  Google Scholar 

  22. Sen R, Jain P, Patidara R, Sanjay S, Rana RS, Gupta N (2015) Synthesis and characterization of nickel ferrite (NiFe2O4) nanoparticles prepared by sol-gel method. J Materials Today: Proceedings 2:750–757

    Google Scholar 

  23. Dinkar DK, Das B, Gopalan R, Dehiya BS (2018) Effects of surfactant on the structural and magnetic properties of hydrothermally synthesized NiFe2O4 nanoparticles. J Materials Chemistry and Physics 218:70–76

    Article  CAS  Google Scholar 

  24. Adeleke JT, Theivasanthi T, Thiruppathi M, Swaminathan M, Akomolafe T, Alabi AB (2018) Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles. J Applied Surface Science 455:195–200

    Article  CAS  Google Scholar 

  25. Pottker WE, Ono R, Cobos MA, Hernando A, Araujo JFDF, Bruno ACO, Lourenço SA, Longo E, Felipe A, La P (2018) Influence of order-disorder effects on the magnetic and optical properties of NiFe2O4 nanoparticles. J Ceramics International 44:17290–17297

    Article  CAS  Google Scholar 

  26. Hcini S, Omri A, Boudard M, Bouazizi ML, Dhahri A, Touileb K (2018) Microstructural, magnetic and electrical properties of Zn0.4M0.3Co0.3Fe2O4 (M = Ni and Cu) ferrites synthesized by sol–gel method. J Mater Sci Mat in Elec 29:6879–6891

    Article  CAS  Google Scholar 

  27. Batoo KM, El-sadek MSA (2013) Electrical and magnetic transport properties of Ni–Cu–Mg ferrite nanoparticles prepared by sol–gel method. J Alloy Compd 566:112–119

    Article  CAS  Google Scholar 

  28. Hcini S, Kouki N, Omri A, Dhahri A, Bouazizi ML (2018) Effect of sintering temperature on structural, magnetic, magnetocaloric and critical behaviors of Ni-Cd-Zn ferrites prepared using sol-gel method. J magnetism and magnetic Materials 464:91–102

    Article  CAS  Google Scholar 

  29. Iftikhar A, Islam MU, Awan MS, Ahmad M, Naseem S, Iqbal MA (2014) Synthesis of super paramagnetic particles of Mn1−xMgxFe2O4 ferrites for hyperthermia applications. J Alloys and Compounds 601:116–119

  30. Ahmed MA, Afify HH, El Zawawia IK (2012) Novel structural and magnetic properties of Mg doped copper nanoferrites prepared by conventional and wet methods. J Magnetism and Magnetic Materials 324:2199–2204

    Article  CAS  Google Scholar 

  31. Gherca D, Pui A, Nica V, Caltun O, Cornei N (2014) Eco-environmental synthesis and characterization of nanophase powders of Co, Mg, Mn and Ni ferrites. J Ceramics International 40:9599–9607

    Article  CAS  Google Scholar 

  32. Filho AS, Matias J, Dias N, Freire V, Julião J, Gomes U (1999) Microstructural and electrical properties of sintered tungsten trioxide. J Mater Sci 34:1031–1035

    Article  Google Scholar 

  33. Routray KL, Behera D (2017) Structural and dielectric properties of bismuth doped cobalt nano ferrites prepared by sol-gel auto combustion method. IOP Conf Ser: Mater Sci Eng 178:12007–12017

    Article  Google Scholar 

  34. Parida BN, Das PR, Padhee R, Choudhary RNP (2013) Ferroelectric and pyroelectric properties of rare earth based tungsten–bronze compounds. J Mater Sci: Mater. Electron 24:305–316

    CAS  Google Scholar 

  35. Jellibi A, Chaabane I, Guidara K (2016) Experimental and theoretical study of AC electrical conduction mechanisms of organic–inorganic hybrid compound Bis (4-acetylanilinium) tetrachlorocadmiate (II). Phys E 80:155–162

    Article  CAS  Google Scholar 

  36. Bilkees R, Khan AA, Javed M, Kazmi J, Mohamed MA, Khan MN, Younis Abid A, Majeed A (2021) Dielectric relaxation and variable range hopping conduction in sol-gel auto combustion derived La0.7Bi0.3Fe0.5Mn0.5O3 manganite. Mater Sci Eng, B 269:115153–115163

    Article  CAS  Google Scholar 

  37. Mahfoudh N, Karoui K, Gargouri M, Ben Rhaiem A (2020) Optical and electrical properties and conduction mechanism of [(CH3)2NH2]2CoCl4. Appl Organomet Chem 34:5404–5415

  38. Gharbi I, Oueslati A, Guidara K, Louati B (2019) Ionic conductivity and conduction mechanism of CsZnPO4 compound. Ionic 25:3991–4001

    Article  CAS  Google Scholar 

  39. Triyono D, Fitria SN, Hanifah U (2020) Dielectric analysis and electrical conduction mechanism of La1−xBixFeO3 ceramics. RSC Adv 10:18323–18338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Radon A, Lukowiec D, Kremzer M, Mikula J, Wlodarczyk P (2018) Electrical conduction mechanism and dielectric properties of spherical shaped Fe3O4 nanoparticles synthesized by co-precipitation method. Materials 11:735–747

    Article  PubMed Central  CAS  Google Scholar 

  41. Ben Brahim KH, Ben gzaiel M, Oueslati A, Gargouri M (2018) Electrical conductivity and vibrational studies induced phase transitions in [(C2H5)4N]FeCl4. RSC Adv 8:40676–40686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ben Bechir M, Karoui K, Tabellout M, Guidara K, Ben Rhaiem A (2014) Alternative current conduction mechanisms of organic-inorganic compound [N(CH3)3H]2CuCl4 Journal of Applied. Physics 115:203712–203723

    Google Scholar 

  43. Karmakar S, Raviteja B, Mistari C D, Parey V, Thapa R, More M A, Behera D (2020) Superior field emission and alternating current conduction mechanisms for grains and grain boundaries in an NiO-[CdO]2 nanocomposite. J Phys Chem Solids 142:109462

  44. Pike GE (1972) AC conductivity of scandium oxide and a new hopping model for conductivity. Phys Rev B 6(4):1572–1580

    Article  CAS  Google Scholar 

  45. Ghosh A (1990) Transport properties of vanadium germanate glassy semiconductors. Phys Rev B 42:5665–5676

    Article  CAS  Google Scholar 

  46. Kuru TŞ, Şentürk E, Eyüpoğlu V (2017) Overlapping large polaron conductivity mechanism and dielectric properties of Al0.2Cd0.8Fe2O4 ferrite nanocomposite. J Supercond Nov Magn 30:655–674

    Article  CAS  Google Scholar 

  47. Pradhan AK, Saha S, Nath TK (2017) AC and DC electrical conductivity, dielectric and magnetic properties of Co0.65Zn0.35Fe2−x Mox O4 (x = 0.0, 0.1 and 0.2) ferrites. Appl Phys A 123:715–724

    Article  CAS  Google Scholar 

  48. Arif Khan A, Umer Fayaz M, Nasir Khan M, Iqbal M, Majeed A, Bilkees R, Mukhtar S, Javed M (2018) Investigation of charge transport mechanism in semiconducting La0.5Ca0.5Mn0.5Fe0.5O3 manganite prepared by sol–gel method. J Mater Sci: Mater Electron 29:13577–13587

    Google Scholar 

  49. Rana DK, Singh SK, Kundu SK, Choudhary RJ, Basu S (2018) Electrical and magnetic properties of polyvinyl alcohol–cobalt ferrite nanocomposite films. Bulletin of Materials Science 41:92

    Article  CAS  Google Scholar 

  50. Oueslati A (2017) Li+ ion conductivity and transport properties of LiYP2O7 compound. Ionics 23(4):857–867

    Article  CAS  Google Scholar 

  51. Mehta N, Kumar D, Kumar S, Kumar A (2005) Applicability of CBH model in the a.c. conduction study of glassy Se100-xInx alloys. J Optoelectron Adv Mater 7(6):2971

    CAS  Google Scholar 

  52. Kahouli A, Sylvestre A, Jomni F, Yangui B, Legrand J (2012) Experimental and theoretical study of AC electrical conduction mechanisms of semicrystalline parylene C thin films. J Phys Chem A 116:1051–1058

    Article  CAS  PubMed  Google Scholar 

  53. Ben Said R, Louati B, Guidara K (2016) Conductivity behavior of the new pyrophosphate NaNi1.5P2O7. Ionics 22:241–249

    Article  CAS  Google Scholar 

  54. Ben Taher Y, Oueslati A, Khirouni K, Gargouri M (2016) Impedance spectroscopy and conduction mechanism of LiAlP2O7 material. Mater Res Bul 78:148–157

    Article  CAS  Google Scholar 

  55. Elliott S (1977) A theory of a.c. conduction in chalcogenide glasses. Phil Mag 36:1291–1304

    Article  CAS  Google Scholar 

  56. Jellibi A, Chaabane I, Guidara K (2016) Experimental and theoretical study of AC electrical conduction mechanisms of organic–inorganic hybrid compound Bis(4-acetylanilinium) tetrachlorocadmiate (II). J Phys E 79:167

    Article  CAS  Google Scholar 

  57. Elliott S (1987) A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36:135–217

    Article  CAS  Google Scholar 

  58. Mott NF, Davis EA (1979) Electronic processes in non-crystalline electronic processes in non-crystalline materials, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  59. Fatima SA, Khan MN, Shaheen R, Shahzad K, Iqbal M (2021) Temperature dependent AC-conduction and relaxation mechanism of spinel MgCo2O4 system by impedance spectroscopy. Physica B: Physics of Condensed Matter 600:412581–412590

    Article  CAS  Google Scholar 

  60. Bacha FB, Borchani SM, Dammak M, Megdiche M (2017) Optical and complex impedance analysis of double tungstates of mono- and trivalent metals for LiGd(WO4)2 compound. J Alloys Compd 712:657–665

    Article  CAS  Google Scholar 

  61. Karmakar S, Raviteja B, Mistari CD, Parey V, Thapa R, More MA, Behera D (2020) Superior field emission and alternating current conduction mechanisms for grains and grain boundaries in an NiO-[CdO]2 nanocomposite. J Phys Chem Solids 142:109462–109473

    Article  CAS  Google Scholar 

  62. Macdonald JR (2000) Comparison of the universal dynamic response power-law fitting model for conducting systems with superior alternative models. Solid State Ionics 133:79–97

    Article  CAS  Google Scholar 

  63. Javed M, Khan AA, Kazmi J, Mohamed MA, Khan MN, Hussain M, Bilkees R (2021) Dielectric relaxation and small polaron hopping transport in sol-gel-derived NiCr2O4 spinel chromite. Mater Res Bull 138:111242–111253

    Article  CAS  Google Scholar 

  64. Prabu M, Selvasekarapandian S (2012) Dielectric and modulus studies of LiNiPO4. Mater Chem Phys 134:366–370

    Article  CAS  Google Scholar 

  65. Oumezzine E, Hcini S, Rhouma FIH, Oumezzine M (2017) Frequency and temperature dependence of conductance, impedance and electrical modulus studies of Ni0.6Cu0.4Fe2O4 spinel ferrite. J Alloy Compd 726:187–194

    Article  CAS  Google Scholar 

  66. Hcini F, Hcini S, Alzahrani B, Zemni S, Bouazizi ML (2020) Effects of sintering temperature on structural, infrared, magnetic and electrical properties of Cd0.5Zn0.5FeCrO4 ferrites prepared by sol–gel route. J Mater Sci: Mater Electron 31:14986–14997

    CAS  Google Scholar 

  67. Javed M, Khan AA, Khan MN, Kazmi J, Mohamed MA (2021) Investigation on Non-Debye type relaxation and polaronic conduction mechanism in ZnCr2O4 ternary spinel oxide. Mater Sci Eng, B 269:115168–115181

    Article  CAS  Google Scholar 

  68. Javed M, Khan AA, Ahmed MS, Khisro SN, Kazmi J, Bilkees R, Khan MN, Mohamed MA (2020) Temperature dependent impedance spectroscopy and electrical transport mechanism in sol-gel derived MgCr2O4 spinel oxide. Physica B: Physics of Condensed Matter 599:412377–412389

    Article  CAS  Google Scholar 

  69. Bergman R (2000) General susceptibility functions for relaxations in disordered systems. J Appl Phys 88:1356–1365

    Article  CAS  Google Scholar 

  70. Vijayan L, Cheruku R, Govindaraj G, Rajagopan S (2011) Ion dynamics in combustion synthesized Na3Cr2(PO4)3 crystallites. Mater Chem Phys 125:184–190

    Article  CAS  Google Scholar 

  71. Williams G, Watts DC (1970) Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 66:80–85

    Article  CAS  Google Scholar 

  72. Chakchouk N, Louati B, Guidara K (2018) Ionic conductivity and dielectric relaxation studies of a low-temperature form of silver zinc phosphate. J Alloy Compd 747:543–549

    Article  CAS  Google Scholar 

  73. Glassstone S, Laidler KJ, Eyring H (1941) Theory of rate process. McGraw-Hill, New York

    Google Scholar 

  74. Ben Yahya S, Louati B (2021) Characterization of the structure and conduction behavior of overlapping polaron tunnel of dipotassium zinc orthogermanate. J Alloy Compd 876:159972–159981

    Article  CAS  Google Scholar 

  75. Sarode AV, Kumbharkhane AC (2012) Dielectric relaxation and thermodynamic properties of polyvinylpyrrolidone using time domain reflectometry. Polym Int 61:609–615

    Article  CAS  Google Scholar 

  76. Mohan A, Malathi M (2018) Dielectric relaxation and thermodynamic studies of binary mixtures of 2-nitrotoluene with primary and secondary alcohols at different temperatures. J Solution Chem 47:667–683

    Article  CAS  Google Scholar 

  77. Sarode AV, Kumbharkhane AC (2011) Study of dielectric relaxation and thermodynamic behaviour in poly(propylene glycol) using time domain reflectometry. Journal of Molecular Liquids 160:109–113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research in the field of scientific research and technology.

Funding

The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number 2021/01/18109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarra Hajlaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajlaoui, S., Hajlaoui, S., Amorri, O. et al. Structural, theoretical, and experimental study of AC electrical conduction mechanism and thermodynamic properties of Cu0.6Cd0.4Cr2O4 spinel oxide. Ionics 28, 4729–4744 (2022). https://doi.org/10.1007/s11581-022-04701-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04701-5

Keywords

Navigation