Skip to main content
Log in

Structural, dielectric and electrical properties of Sol–gel auto-combustion technic of CuFeCr0.5Ni0.5O4 ferrite

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The CuFeCr0.5Ni0.5O4 (CFO) compound was synthesized using sol–gel reaction combustion technic. The structural analysis showed that the obtained composites have a polycrystalline nature and the cubic spinel structure (\({\text{Fd}}\bar{3}m~\) space group). Microstructural analysis revealed the formation of spherical and elongated grains of our sample. The dielectric and electrical transport properties of CuFeCr0.5Ni0.5O4 were investigated in detail by Ac impedance spectroscopy in a wide range of temperature (200–400 K) and frequency (100 Hz to100KHz). Our results show that the electrical modulus and impedance studies confirm the presence of a relaxation phenomenon with non-Debye type in the prepared sample. The activation energy Edc estimated from the slope of the linear fit plot is equal to 0.158 eV with frequency of 100 Hz and 0.126 eV with frequency of 1 MHz at temperature range 200–400 K. Close activation energies values were found from analyses of relaxation time and dc conductivity indicating that the relaxation and the conduction processes may be attributed to the presence of free carrier charges and impurities at the grain boundaries. The conduction process for samples is described by the NSPT model. The complex impedance analyses and modulus formalism confirm a grain and grain boundaries mechanism contributing to the dielectric properties. The real and the imaginary parts of the impedance are well-fitted to equivalent electrical circuit (Rg + Rgb//CPEgb) and we used for modeling the Nyquist data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Vara Prasad BBVS, Ramesh KV, Srinivas A (2019) Structural and magnetic studies on Co-Zn nanoferritesynthesized via sol-gel and combustion methods. Mater Sci-Pol 37(1):39–54. https://doi.org/10.2478/msp-2019-0013

    Article  CAS  Google Scholar 

  2. Shoyeb Mohamad F, Shaikh Mohd Ubaidullah, Mane Rajaram S, Al-Enizi Abdullah M (2020) Types Synthesis methods and applications of ferrites. Elsevier, Spinel Ferrite Nanostructures for Energy Storage Devices Micro and Nano Technologies, pp 51–82

    Google Scholar 

  3. Rahman MT, Vargas M, Ramana CV (2014) “Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J Alloys Compd 617:547–562. https://doi.org/10.1016/j.jallcom.2014.07.182

    Article  CAS  Google Scholar 

  4. Meng YY, Liu ZW, Dai HC, Yu HY, Zeng DC, Shukla S, Ramanujan RV (2012) Structure and magnetic properties of Mn (Zn)Fe2−xRExO4 ferrite nano-powders synthesized by co-precipitation and refluxing method. J Powd Tech 229:270–275. https://doi.org/10.1016/j.powtec.2012.06.050

    Article  CAS  Google Scholar 

  5. Ponpandian N, Balaya P, Narayanasamy A (2002) Electrical conductivity and dielectric behaviour of nanocrystalline NiFe2O4 spinel. J Phys: Condens Matter 14:3221–3237. https://doi.org/10.1088/0953-8984/14/12/311

    Article  CAS  Google Scholar 

  6. Dionne Gerald F, West Russell G (1987) Magnetic and dielectric properties of the spinel ferrite system Ni0.65Zn0.35Fe2 − x Mn xO4. J Appl Phys 61:3868–3870. https://doi.org/10.1063/1.338623

    Article  CAS  Google Scholar 

  7. Mathe VL, Kamble RB (2013) Electrical and dielectric properties of nanocrystalline Ni-Co spinel ferrites. Mater Res Bull 48:1415–1419. https://doi.org/10.1016/j.materresbull.2012.12.019

    Article  CAS  Google Scholar 

  8. Ranjith Kumar E, Reddy SP, Sarala Devi G, Sathiyaraj S (2016) Structural, dielectric and gas sensing behavior ofMn substituted spinel MFe2O4 (M= Zn, CU, NI, and CO) ferrite nanoparticles. J Magn Magn Mater 398:281–288. https://doi.org/10.1016/j.jmmm.2015.09.018

    Article  CAS  Google Scholar 

  9. Cernea M, Galizia P, Ciuchi I, Aldica G, Mihalache V, Diamandescu L, Galassi C (2016) CoFe2O4magnetic ceramic derived from gel and densified by spark plasma sintering. J Alloys Compd 656:854–862. https://doi.org/10.1016/j.jallcom.2015.09.271

    Article  CAS  Google Scholar 

  10. Rajath PC, Manna RS, Banerjee D, Varma MR, Suresh KG, Nigam AK (2008) Magnetic properties of CoFe2O4 synthesized by solid state, citrate precursor and polymerized complex methods: A comparative study. J Alloys Compd 453:298–303. https://doi.org/10.1016/j.jallcom.2006.11.058

    Article  CAS  Google Scholar 

  11. Spaldin N (2003) Magnetic Materials: Fundamentals and Device Applications Cambridge University Press

    Google Scholar 

  12. Houshiar M, Zebhi F, Razi ZJ, Alidoust A, Askari Z (2014) Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: a comparison study of size, structural, and magnetic properties. J Magn Magn Mater 371:43–48. https://doi.org/10.1016/j.jmmm.2014.06.059

    Article  CAS  Google Scholar 

  13. Pradeep A, Priyadharsini P, Chandrasekaran G (2008) Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. J Magn Magn Mater 320:2774–2779. https://doi.org/10.1016/j.jmmm.2008.06.012

    Article  CAS  Google Scholar 

  14. Wang L, Li J, Wang Y, Zhao L, Jiang Q (2012) Adsorption capability for Congo red on nanocrystalline MFe2O4 (M = Mn, Fe Co, Ni) spinel ferrites. Chem Eng J 181–182:72–79. https://doi.org/10.1016/j.cej.2011.10.088

    Article  CAS  Google Scholar 

  15. Pillai V, Shah DO (1996) Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J Magn Magn Mater 163:243–248. https://doi.org/10.1016/S0304-8853(96)00280-6

    Article  CAS  Google Scholar 

  16. Wagner J, Autenrieth T, Hempelmann R (2002) Core shell particles consisting of cobalt ferrite and silica as model ferrofluids [CoFe2O4–SiO2 core shell particles]. J Magn Magn Mater 252:4–6. https://doi.org/10.1016/S0304-8853(02)00729-1

    Article  CAS  Google Scholar 

  17. Ammar S, Helfen A, Jouini N et al (2001) Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium. J Mater Chem 11:186–192. https://doi.org/10.1039/B003193N

    Article  CAS  Google Scholar 

  18. Ianoş R, Bosca M, Lazău R (2014) Fine tuning of CoFe2O4 properties prepared by solution combustion synthesis. Ceram Int 40:10223–10229. https://doi.org/10.1016/j.ceramint.2014.02.110

    Article  CAS  Google Scholar 

  19. Salazar-Kuri U, Estevez JO, Silva-González NR, Pal U (2018) Large magnetostriction in chemically fabricated CoFe2O4 nanoparticles and its temperature dependence. J Magn Magn Mater 460:141–145. https://doi.org/10.1016/j.jmmm.2018.03.074

    Article  CAS  Google Scholar 

  20. Annie Vinosha P, Jerome Das S (2018) Investigation on the role of pH for the structural, optical and magnetic properties of cobalt ferrite nanoparticles and its effect on the photo-fenton activity. Mater Today Proc 5:8662–8671. https://doi.org/10.1016/j.matpr.2017.12.291

    Article  CAS  Google Scholar 

  21. Dong N, He F, Xin J, Wang Q, Lei Z, Su B (2015) Preparation of CoFe2O4 magnetic fiber nanomaterial via a template-assisted solvothermal method. Mater Lett 141:238–241. https://doi.org/10.1016/j.matlet.2014.11.054

    Article  CAS  Google Scholar 

  22. Varma PCR, Manna RS, Banerjee D, Varma MR, Suresh KG, Nigam AK (2008) Magnetic properties of CoFe2O4 synthesized by solid state, citrate precursor and polymerized complex methods: a comparativestudy. J Alloys Compd 453:298–303. https://doi.org/10.1016/j.jallcom.2006.11.058

    Article  CAS  Google Scholar 

  23. Maleki A, Hosseini N, Taherizadeh A (2018) Synthesis and characterization of cobalt ferrite nanoparticles prepared by the glycine-nitrate process. Ceram Int 44:8576–8581. https://doi.org/10.1016/j.ceramint.2018.02.063

    Article  CAS  Google Scholar 

  24. Gabal MA, Al-Juaid AA, El-Rashed S, Hussein MA (2017) Synthesis and characterization of nano-sized CoFe2O4 via facile methods: a comparative study. Mater Res Bull 89:68–78. https://doi.org/10.1016/j.materresbull.2016.12.048

    Article  CAS  Google Scholar 

  25. Pourgol mohammad B, Masoudpanah SM, Aboutalebi MR (2017) Synthesis of CoFe2O4 powders with highsurface area by solution combustion method: Effect of fuel content and cobalt precursor. Ceram Int 43:3797–3803. https://doi.org/10.1016/j.ceramint.2016.12.027

    Article  CAS  Google Scholar 

  26. Rajan Babu D, Venkatesan K (2017) Synthesis of nanophasic CoFe2O4 powder by self-igniting solution combustionmethod using mix up fuels. J Cryst Growth 468:179–184. https://doi.org/10.1016/j.jcrysgro.2016.11.054

    Article  CAS  Google Scholar 

  27. Pottkera Walmir E, Onoa Rodrigo, Cobosb Miguel Angel, Hernandob Antonio, Araujod Jefferson FDF., Brunod Antonio C.O., Lourençoa Sidney A, Longoe Elson, La Portaa Felipe A (2018) Influence of order-disorder effects on the magnetic and optical properties of NiFe 2 O 4 nanoparticles. Ceram Int 44:17290–17297. https://doi.org/10.1016/j.ceramint.2018.06.190

    Article  CAS  Google Scholar 

  28. Cullity BD, Stock SR (2001) Elements of X-Ray Diffraction, 3rd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  29. Hcini S, Omri A, Boudard M, Bouazizi ML, Dhahri A, Touileb K (2018) Effect of sintering temperature on structural, magnetic, magnetocaloric and critical behaviors of Ni-Cd-Zn ferrites prepared using sol-gel method. J of Mag and Mag Mat 464:91–102. https://doi.org/10.1016/j.jmmm.2018.05.045

    Article  CAS  Google Scholar 

  30. Batoo KM, El-sadek MSA (2013) Electrical and magnetic transport properties of Ni–Cu–Mg ferrite nanoparticles prepared by sol–gel method. J Alloy Compd 566:112–119. https://doi.org/10.1016/j.jallcom.2013.02.129

    Article  CAS  Google Scholar 

  31. Kim DH, Nikles DE, Johnson DT, Brazel CS (2008) Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J Magn Magn Mater 320:2390–2396. https://doi.org/10.1016/j.jmmm.2008.05.023

    Article  CAS  Google Scholar 

  32. Deraz NM (2012) Effects of magnesia addition on structural, morphological and magnetic properties of nano-crystalline nickel ferrite system. Ceram Int 38:511–516. https://doi.org/10.1016/j.ceramint.2011.07.036

    Article  CAS  Google Scholar 

  33. Ahmad MR, Jamil Y, Tabasuum A, Hussain T (2015) Refinement in the structural and magnetic properties of Co0.5Ni0.5Fe2O4 and its application as laser micro-propellant using ablation confinement. J Magn Magn Mater 384:302–307. https://doi.org/10.1016/j.jmmm.2015.02.064

    Article  CAS  Google Scholar 

  34. Duong GV, Hanh N, Linh DV, Groessinger R, Weinberger P, Schafler E, Zehetbauer M (2007) Monodispersed nanocrystalline Co1-xZnxFe2O4 particles by forced hydrolysis: synthesis and characterization. J Magn Magn Mater 311:46–50. https://doi.org/10.1016/j.jmmm.2006.11.167

    Article  CAS  Google Scholar 

  35. Sepelak V, Bergmann I, Feldhoff A, Heitjans P, Krumeich F, Menzel D, Litterst FJ, Campbell SJ, Becker KD (2007) Nanocrystalline Nickel Ferrite, NiFe2O4: mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement, and magnetic behavior. J Phys Chem C 111:5026–5033. https://doi.org/10.1021/jp067620s

    Article  CAS  Google Scholar 

  36. Slimani Y, Güngüne¸s H, Nawaz M, Manikandan A, el Sayed HS, Almessiere MA, Sözeri H, Shirsath SE, Ercan I, Baykal A (2018) Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Ceram Int 44:14242–14250. https://doi.org/10.1016/j.ceramint.2018.05.028

    Article  CAS  Google Scholar 

  37. Coey JMD (1971) Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys Rev Lett 27:1140–1142. https://doi.org/10.1103/PhysRevLett.27.1140

    Article  CAS  Google Scholar 

  38. Amir M, Gungunes H, Slimani Y, Tashkandi N, el Sayed HS, Aldakheel F, Sertkol M, Sozeri H, Manikandan A, Ercan I et al (2018) Mossbauer studies and magnetic properties of cubic CuFe2O4 nanoparticles. J Supercond Nov Magn 32:557–564. https://doi.org/10.1007/s10948-018-4733-5

    Article  CAS  Google Scholar 

  39. Ahmed MA, Ateia E, El-Dek SI (2003) Rare earth doping effect on the structural and electricalproperties of Mg–Ti ferrite. Mater Lett 57:4256–4266

    Article  CAS  Google Scholar 

  40. Rezlescu N, Rezlescu E, Pasnicu C, Craus ML (1994) Effects of the rare-earth ions on someproperties of a nickel-zinc ferrite. J Phys Codens Matter 6:5707–5716. https://doi.org/10.1088/0953-8984/6/29/013

    Article  CAS  Google Scholar 

  41. Elkestawy MA (2010) AC conductivity and dielectric properties of, Zn1− xCuxCr0.8Fe1.2O4spinel ferrites. J All and Com 492:616–620. https://doi.org/10.1016/j.jallcom.2009.11.194

    Article  CAS  Google Scholar 

  42. Fawzi Abdul Samee, Sheikh AD, Mathe VL (2010) Structural, dielectric properties and AC conductivity of Ni(1–x)ZnxFe2O4 spinel ferrites. J All and Com 502:231–237. https://doi.org/10.1016/j.jallcom.2010.04.152

    Article  CAS  Google Scholar 

  43. Ghodake JS, Kambale RC, Salvi SV et al (2009) Electric properties of Co substituted Ni–Zn ferrites. J Alloys Comp 486:830–834. https://doi.org/10.1016/j.jallcom.2009.07.075

    Article  CAS  Google Scholar 

  44. Selmi A, Hcini S, Rahmouni H, Omri A, Lamjed Bouazizi M, Dhahri A (2017) Synthesis, structural and complex impedancespectroscopy studies of Ni 0.4 Co 0.4 Mg 0.2 Fe 2 O 4 spinel ferrite. Phase Trans 90:942–954. https://doi.org/10.1080/01411594.2017.1309403

    Article  CAS  Google Scholar 

  45. Jonscher AK (1977) The Universal dielectric response. Nature 267:673–679. https://doi.org/10.1038/267673a0

    Article  CAS  Google Scholar 

  46. Amar Nath K, Prasad K, Chandra KP, Kulkarni AR (2013) Impedance and a.c. conductivity studies of Ba(Pr1/2Nb1/2) O3 ceramic. Bull Mater Sci 36:591–599. https://doi.org/10.1007/s12034-013-0503-y

    Article  CAS  Google Scholar 

  47. Abdel-Karim AM, Salama AH, El-Samahy Fatma A, El-Sedik Mervat, Osman Fayez H (2017) Some dielectric properties of novel nano-s-triazine derivatives. J Phys Org Chem 30(12):e3703

    Article  Google Scholar 

  48. Parashar SKS, Chaudhuri Swarat, Singh Satyendra Narayan, Ghoranneviss Mahmood (2013) Electrical conduction in nanoceramic PGT synthesised by high energy ball milling. J Theor Appl Phys 7(26):1–20. https://doi.org/10.1186/2251-7235-7-26

    Article  Google Scholar 

  49. Pradhan DK, Behera B, Das PR (2012) Studies of dielectric and electrical properties of a new type of complex tungsten bronze electroceramics. J Mater Sci Mater Electron 23:779–785. https://doi.org/10.1007/s10854-011-0492-9

    Article  CAS  Google Scholar 

  50. Kuru TŞ, Şentürk E, Eyüpoğlu V (2017) Overlapping large polaron conductivity mechanism and dielectric properties of Al0.2Cd0.8Fe2O4 ferrite nanocomposite. J Supercond Nov Magn 30:655–674. https://doi.org/10.1007/s10948-016-3847-x

    Article  CAS  Google Scholar 

  51. Megha R, Ravikiran YT, Vijaya Kumari SC, Thomas S (2017) Optimized polyaniline-transition metal oxide composites: a comparative study of alternating current conductivity via correlated barrier hopping model. Appl Phys A-Mater 123:1–10. https://doi.org/10.1002/pc.24375

    Article  CAS  Google Scholar 

  52. Rana DK, Singh SK, Kundu SK, Choudhary RJ, Basu S (2018) Electrical and magnetic properties of polyvinyl alcohol–cobalt ferrite nanocomposite films. Bull Mater Sci 41:92–102. https://doi.org/10.1007/s12034-018-1608-0

    Article  CAS  Google Scholar 

  53. Pradhan AK, Saha S, Nath TK (2017) AC and DC electrical conductivity, dielectric and magnetic properties of Co0.65Zn0.35Fe2−x Mo x O4 (x = 0.0, 0.1 and 0.2) ferrites. Appl Phys A-Mater 123:715–724. https://doi.org/10.1007/s00339-017-1329-z

    Article  CAS  Google Scholar 

  54. Sutka A, Lagzdina S, Mezinskis G, Pludons A, Vitina I, Timma L (2011) A comparative study of Ni0.7Zn0.3Fe2O4 obtained by sol-gel auto-combustion and flash combustion methods. IOP Conf Ser: Mater Sci Eng 25:012019–8. https://doi.org/10.1088/1757-899X/25/1/012019

    Article  CAS  Google Scholar 

  55. Elliot SR, Henn FEG (1990) Application of the Anderson-Stuart model to the AC conduction of ionically conducting materials. J Non-Cryst Solids 32:179–190. https://doi.org/10.1016/0022-3093(90)90691-E

    Article  Google Scholar 

  56. Mott NF, Davis EA (1979) Electronic processes in non crystalline materials. Clarendon Press, Oxford

    Google Scholar 

  57. Parker R, Grtffiths BA, Elwell D (1966) The effect of cobalt substitution on electrical conduction in nickel. Br J Appl Phys 17:1269–1276. https://doi.org/10.1088/0508-3443/17/10/303

    Article  CAS  Google Scholar 

  58. Kambale RC, Shaikh PA, Kamble SS, Kolekar YD (2009) Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J Alloy Compd 478:599–603. https://doi.org/10.1016/j.jallcom.2008.11.101

    Article  CAS  Google Scholar 

  59. Joshi Seema, Kumar Manoj, Chhoker Sandeep, Srivastava Geetika, Jewariya Mukesh, Singh, VN (2014) Structural, magnetic, dielectric and optical properties of nickel ferritenanoparticles synthesized by co-precipitation method. J Mol Struct 1076:55–62. https://doi.org/10.1016/j.molstruc.2014.07.048

    Article  CAS  Google Scholar 

  60. Hcini F, Hcini S, Alzahrani B, Zemni S, Bouazizi ML (2020) Effect of Cr substitution on structural, magnetic and impedance spectroscopic properties of Cd0.5Zn0.5Fe2−xCrxO4 ferrites. Appl Phys A 126:362–376. https://doi.org/10.1007/s00339-020-03544-z

    Article  CAS  Google Scholar 

  61. Hcini S, Omri A, Boudard M, Bouazizi ML, Dhahri A, Touileb K (2018) Microstructural, magnetic and electrical properties ofZn0.4M0.3Co0.3Fe2O4 (M = Ni and Cu) ferrites synthesized by sol–gel method. J Mater Sci: Mater Electron 29:6879–6891. https://doi.org/10.1007/s10854-018-8674-3

    Article  CAS  Google Scholar 

  62. Farea AMM, Kumar S, Batoo KM (2008) Structure and electrical properties of Co0.5CdxFe2.5¡xO4 ferrites. J Alloy Compd 464:361–369. https://doi.org/10.1016/j.jallcom.2007.09.126

    Article  CAS  Google Scholar 

  63. Oumezzine E, Hcini S, Rhouma FIH, Oumezzine M (2017) Frequency and temperature dependence of conductance, impedance and electrical modulus studies of Ni0.6Cu0.4Fe2O4 spinel ferrite. J Alloys Compd 726:187–194. https://doi.org/10.1016/j.jallcom.2017.07.298

    Article  CAS  Google Scholar 

  64. Kossi S, Rhouma FIH, Dhahri J, Khirouni K (2014) Structural and electric properties of La0.7Sr0.25Na0.05Mn0.9Ti0.1O3. Ceram Phys B 440:118–123

    Article  Google Scholar 

  65. Shukla A, Choudhary RNP, Thakur AK (2009) Thermal, structural and complex impedance analysis of Mn4+ modified BaTiO3 electroceramic. J Phys Chem Solid 70:1401–1407. https://doi.org/10.1016/j.jpcs.2009.08.015

    Article  CAS  Google Scholar 

  66. Mguedla R, Ben Jazia A, Saadi M, Khirouni K, Chniba-boudjada N, Boujelben W (2020) Structural, electrical, dielectric and optical properties of PrCrO3 ortho-chromite. J Alloys Compd 812:152130–11. https://doi.org/10.1016/j.jallcom.2019.152130

    Article  CAS  Google Scholar 

  67. Giuntini JC, Zanchetta JV, Jullien D, Eholie R, Houenou P (1981) Temperature dependence of dielectric losses in chalcogenide glasses. J Non-Cryst Solids 45:57–62. https://doi.org/10.1016/0022-3093(81)90089-2

    Article  CAS  Google Scholar 

  68. Ben Jazia Kharrat A, Bourouina M, Moutia N, Khirouni K, Boujelben W (2018) Gddoping effect on impedance spectroscopy properties of sol-gel prepared Pr0.5-xGdxSr0.5MnO3 (0x0.3) perovskites. J Alloy Comp 741:723–733. https://doi.org/10.1016/j.jallcom.2018.01.236

    Article  CAS  Google Scholar 

  69. Ben Bechir M, Karoui K, Tabellout M, Guidara K, Ben Rhaiem A (2014) Electric and dielectric studies of the [N(CH3)3H]2CuCl4 compound at low temperature. J Alloy Comp 588:551–557. https://doi.org/10.1016/j.jallcom.2013.11.141

    Article  CAS  Google Scholar 

  70. Ncib W, Kharrat ABJ, Wederni MA, Khirouni K, Boujelben W (2018) Investigation of structural, electrical and dielectric properties of sol-gel prepared La0.67-xEuxBa0.33Mn0.85Fe0.15O3 (x=0.0, 0.1) manganites. J Alloys Compd 768:249–262. https://doi.org/10.1016/j.jallcom.2018.07.192

    Article  CAS  Google Scholar 

  71. Oumezzine E, Hcini S, Rhouma FIH et al (2017) Frequency and temperature dependence of conductance, impedanceand electrical modulus studies of Ni0.6Cu0.4Fe2O4 spinel ferrite. J Alloys Compd 726:187–194. https://doi.org/10.1016/j.jallcom.2017.07.298

    Article  CAS  Google Scholar 

  72. Hcini S, Khadhraoui S, Triki A, Zemni S, Boudard M, Oumezzine M (2014) Impedance spectroscopy properties of Pr0.67A0.33MnO3 (A = Ba or Sr) Perovskites. J Supercond Nov Magn 27:195–201. https://doi.org/10.1007/s10948-013-2240-2

    Article  CAS  Google Scholar 

  73. Sekrafi HE, Ben Jazia Kharrat A, Wederni MA, Chniba-Boudjada N, Khirouni K, Boujelben, W (2019) Impact of low titanium concentration on the structural, electrical and dielectric properties of Pr0.75Bi0.05Sr0.1Ba0.1Mn1−xTixO3 (x = 0, 0.04) compounds. J Mater Sci: Mater Electron 30:876–891. https://doi.org/10.1007/s10854-018-0359-4

    Article  CAS  Google Scholar 

  74. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. Chem Phys 9:341–351. https://doi.org/10.1063/1.1750906

    Article  CAS  Google Scholar 

  75. Vasoya NH, Jha PK, Saija KG, Dolia SN, Zankat KB, Modi KB (2016) Electric modulus, scaling and modeling of dielectric properties for Mn2+-Si4+ Co-substituted Mn-Zn Ferrites. J Electron Mater 45:917–927. https://doi.org/10.1007/s11664-015-4224-4

    Article  CAS  Google Scholar 

  76. Dutta A, Saha S, Sinha TP (2007) Dielectric relaxation and electronic structure of Ca(Fe1/2Sb1/2)O3. Phys Rev B 65:155113–155117. https://doi.org/10.1103/PhysRevB.76.155113

    Article  CAS  Google Scholar 

  77. D. Johnson (2008) ZView: a software program for IES analysis. Version 2.8. Southern Pines, NC: Scribner Associates, Inc.

  78. Mohamed CB, Karoui K, Saidi S, Guidara K, Rhaiem AB (2014) Electrical properties, phase transitions and conduction mechanisms of the [(C2H5)NH3]2CdCl4 compound. Phys B 451:87–95. https://doi.org/10.1016/j.physb.2014.06.006

    Article  CAS  Google Scholar 

  79. Hcini S, Khadhraoui S, Triki A, Zemni S, Boudard M, Oumezzine M (2014) Impedance spectroscopy properties of Pr0.67A0.33MnO3 (A = Ba or Sr) perovskites. J Supercond Nov Magn 27:195–201. https://doi.org/10.1007/s10948-013-2240-2

    Article  CAS  Google Scholar 

  80. Kossi SEL, Rhouma FIH, Dhahri J, Khirouni K (2014) Structural and electric properties of La0.7Sr0.25Na0.05Mn0.9Ti0.1O3. Ceramics Phys B 440:118–123

    Article  Google Scholar 

  81. Shukla A, Choudhary RNP, Thakur AK (2009) Thermal, structural and complex impedance analysis of Mn4+ modified BaTiO3 electroceramic. J Phys Chem Solid 70:1401–1407. https://doi.org/10.1016/j.jpcs.2009.08.015

    Article  CAS  Google Scholar 

  82. Sivakumar N, Narayanasamy A, Ponpandian N, Govindaraj G (2007) Grain size effect on the dielectric behavior of nanostructured Ni0.5Zn0.5Fe2O4. J Appl Phys 101(8):084116. https://doi.org/10.1063/1.2721379

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Rejaiba.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rejaiba, O., Hcini, F., Nasri, M. et al. Structural, dielectric and electrical properties of Sol–gel auto-combustion technic of CuFeCr0.5Ni0.5O4 ferrite. J Mater Sci 56, 16044–16058 (2021). https://doi.org/10.1007/s10853-021-06315-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06315-0

Navigation