Skip to main content

Advertisement

Log in

Construction of Safety and Non-flammable Polyimide Separator Containing Carboxyl Groups for Advanced Fast Charing Lithium-ion Batteries

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

With the wide applications of lithium-ion batteries (LIBs) in electronic devices and electric vehicles, it is of great importance to improve their safety and electrochemical performance. Herein, soluble polyimides (PI) containing carboxyl groups (−COOH) were synthesized by a simple one-step method and PI separators with sponge-like, interpenetrating porous structures were prepared via non-solvent induced phase separation (NIPS). The obtained PI separators exhibited excellent thermal stability and fire-resistance properties, with the electrolyte uptake of 344% and good dimensional integrity in air at 200 °C. The results showed that the lithium-ion transference number of the obtained PI separator could reach 0.48, which was much higher than that of the Celgard-2400 separator (0.38). The Li/LiFePO4 half-cell with the PI separator showed excellent cycle capability and high-rate performance with a high capacity of 121.80 mA·h·g−1 at 5 C, which was better than that of the cell with the Celgard-2400 separator (54.3 mA·h·g−1), demonstrating the promising applications of this PI separators in LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shan, X. Y.; Li, F.; Wang, D. W.; Cheng, H. M. The smart era of electrochemical energy storage devices. Energy Storage Mater. 2016, 3, 66–68.

    Article  Google Scholar 

  2. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7, 3857–3886.

    Article  CAS  Google Scholar 

  3. Li, Y.; Yu, L.; Hu, W.; Hu, X. Thermotolerant separators for safe lithium-ion batteries under extreme conditions. J. Mater. Chem. A 2020, 8, 20294–20317.

    Article  CAS  Google Scholar 

  4. Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 2018, 10, 246–267.

    Article  Google Scholar 

  5. Shin, D. W.; Guiver, M. D.; Lee, Y. M. Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability. Chem. Rev. 2017, 117, 4759–4805.

    Article  CAS  PubMed  Google Scholar 

  6. Li, D.; Zhang, H.; Li, X. Porous polyetherimide membranes with tunable morphology for lithium-ion battery. J. Membr. Sci. 2018, 565, 42–49.

    Article  CAS  Google Scholar 

  7. Yin, M.; Huang, J.; Yu, J.; Chen, G.; Qu, S.; Wang, X.; Li, C. The polypropylene membrane modified by an atmospheric pressure plasma jet as a separator for lithium-ion button battery. Electrochim. Acta 2018, 260, 489–497.

    Article  CAS  Google Scholar 

  8. Costa, C. M.; Lee, Y. H.; Kim, J. H.; Lee, S. Y.; Lanceros-Méndz, S. Recent advances on separator membranes for lithium-ion battery applications: from porous membranes to solid electrolytes. Energy Storage Mater. 2019, 22, 346–375.

    Article  Google Scholar 

  9. Heidari, A. A.; Mahdavi, H. Recent development of polyolefin-based microporous separators for Li-ion batteries: a review. Chem. Rec. 2020, 20, 570–595.

    Article  CAS  PubMed  Google Scholar 

  10. Gu, Q. Q.; Xue, H. J.; Li, Z. W.; Song, J. C.; Sun, Z. Y. High-performance polyethylene separators for lithium-ion batteries modified by phenolic resin. J. Power Sources 2021, 483, 229155.

    Article  CAS  Google Scholar 

  11. Sheng, L.; Song, L.; Gong, H.; Pan, J.; Bai, Y.; Song, S.; Liu, G.; Wang, T.; Huang, X.; He, J. Polyethylene separator grafting with polar monomer for enhancing the lithium-ion transport property. J. Power Sources 2020, 479, 228812.

    Article  CAS  Google Scholar 

  12. Luo, W.; Cheng, S.; Wu, M.; Zhang, X.; Yang, D.; Rui, X. A review of advanced separators for rechargeable batteries. J. Power Sources 2021, 509, 230372.

    Article  CAS  Google Scholar 

  13. Ding, L.; Zhang, C.; Wu, T.; Yang, F.; Lan, F.; Cao, Y.; Xiang, M. Effect of temperature on compression behavior of polypropylene separator used for Lithium-ion battery. J. Power Sources 2020, 466, 228300.

    Article  CAS  Google Scholar 

  14. Feng, X.; Zheng, S.; Ren, D.; He, X.; Wang, L.; Cui, H.; Liu, X.; Jin, C.; Zhang, F.; Xu, C.; Hsu, H.; Gao, S.; Chen, T.; Li, Y.; Wang, T.; Wang, H.; Li, M.; Ouyang, M. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl. Energy 2019, 246, 53–64.

    Article  CAS  Google Scholar 

  15. Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288.

    Article  CAS  Google Scholar 

  16. Orendorff, C. J.; Lambert, T. N.; Chavez, C. A.; Bencomo, M.; Fenton, K. R. Polyester separators for lithium-ion cells: improving thermal stability and abuse tolerance. Adv. Energy Mater. 2013, 3, 314–320.

    Article  CAS  Google Scholar 

  17. Song, J.; Ryou, M. H.; Son, B.; Lee, J. N.; Lee, D. J.; Lee, Y. M.; Choi, J. W.; Park, J. K. Co-polyimide-coated polyethylene separators for enhanced thermal stability of lithium ion batteries. Electrochim. Acta 2012, 85, 524–530.

    Article  CAS  Google Scholar 

  18. Liang, N.; Fang, J.; Guo, X. A simple approach for preparation of porous polybenzimidazole membranes as a promising separator for lithium ion batteries. J. Mater. Chem. A 2017, 5, 15087–15095.

    Article  CAS  Google Scholar 

  19. Liu, X.; Wu, Y.; Yang, F.; Wang, S.; Zhang, B.; Wang, L. An effective dual-channel strategy for preparation of polybenzimidazole separator for advanced-safety and high-performance lithium-ion batteries. J. Membr. Sci. 2021, 626, 119190.

    Article  CAS  Google Scholar 

  20. Liu, X.; Zhang, B.; Wu, Y.; Chen, J.; Fang, M.; Wang, L.; Wang, L. The effects of polybenzimidazole nanofiber separator on the safety and performance of lithium-ion batteries: characterization and analysis from the perspective of mechanism. J. Power Sources 2020, 475, 228624.

    Article  CAS  Google Scholar 

  21. Patel, A.; Wilcox, K.; Li, Z.; George, I.; Juneja, R.; Lollar, C.; Lazar, S.; Grunlan, J.; Tenhaeff, W. E.; Lutkenhaus, J. L. High modulus, thermally stable, and self-extinguishing aramid nanofiber separators. ACS Appl. Mater. Interfaces 2020, 12, 25756–25766.

    Article  CAS  PubMed  Google Scholar 

  22. Yang, B.; Wang, L.; Zhang, M.; Li, W.; Zhou, Q.; Zhong, L. Advanced separators based on aramid nanofiber (ANF) membranes for lithium-ion batteries: a review of recent progress. J. Mater. Chem. A 2021, 9, 12923–12946.

    Article  CAS  Google Scholar 

  23. Liu, J.; Wang, J.; Zhu, L.; Chen, X.; Ma, Q.; Wang, L.; Wang, X.; Yan, W. A high-safety and multifunctional MOFs modified aramid nanofiber separator for lithium-sulfur batteries. Chem. Eng. J. 2021, 411, 128540.

    Article  CAS  Google Scholar 

  24. l’Abee, R.; DaRosa, F.; Armstrong, M. J.; Hantel, M. M.; Mourzagh, D. High temperature stable Li-ion battery separators based on polyetherimides with improved electrolyte compatibility. J. Power Sources Sources 2017, 345, 202–211.

    Article  Google Scholar 

  25. Shi, J.; Xia, Y.; Yuan, Z.; Hu, H.; Li, X.; Zhang, H.; Liu, Z. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery. Sci. Rep. 2015, 5, 8255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kong, L.; Liu, B.; Ding, J.; Yan, X.; Tian, G.; Qi, S.; Wu, D. Robust polyetherimide fibrous membrane with crosslinked topographies fabricated via in-situ micro-melting and its application as superior Lithium-ion battery separator with shutdown function. J. Membr. Sci. 2018, 549, 244–250.

    Article  CAS  Google Scholar 

  27. Qi, W.; Lu, C.; Chen, P.; Han, L.; Yu, Q.; Xu, R. Electrochemical performances and thermal properties of electrospun poly(phthalazinone ether sulfone ketone) membrane for lithium-ion battery. Mater. Lett. 2012, 66, 239–241.

    Article  CAS  Google Scholar 

  28. Wang, T.; Sun, F.; Wang, H.; Yang, S.; Fan, L. Preparation and properties of pore-filling membranes based on sulfonated copolyimides and porous polyimide matrix. Polymer 2012, 53, 3154–3162.

    Article  CAS  Google Scholar 

  29. Pai, J. Y.; Hsieh, C. T.; Lee, C. H.; Wang, J. A.; Ku, H. Y.; Huang, C. L.; Hardwick, L. J.; Hu, C. C. Engineering of electrospun polyimide separators for electrical double-layer capacitors and lithium-ion cells. J. Power Sources 2021, 482, 229054.

    Article  CAS  Google Scholar 

  30. Lin, D.; Zhuo, D.; Liu, Y.; Cui, Y. All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator. J. Am. Chem. Soc. 2016, 138, 11044–11050.

    Article  CAS  PubMed  Google Scholar 

  31. Liao, C.; Wang, W.; Wang, J.; Han, L.; Qiu, S.; Song, L.; Gui, Z.; Kan, Y.; Hu, Y. Magnetron sputtering deposition of silicon nitride on polyimide separator for high-temperature lithium-ion batteries. J. Energy Chem. 2021, 56, 1–10.

    Article  Google Scholar 

  32. Lu, Z.; Sui, F.; Miao, Y. E.; Liu, G.; Li, C.; Dong, W.; Cui, J.; Liu, T.; Wu, J.; Yang, C. Polyimide separators for rechargeable batteries. J. Energy Chem. 2021, 58, 170–197.

    Article  Google Scholar 

  33. Dong, G.; Liu, B.; Kong, L.; Wang, Y.; Tian, G.; Qi, S.; Wu, D. Neoteric polyimide nanofiber encapsulated by the TiO2 armor as the tough, highly wettable, and flame-retardant separator for advanced lithium-ion batteries. ACS Sustain. Chem. Eng. 2019, 7, 17643–17652.

    Article  CAS  Google Scholar 

  34. Huang, X.; Hitt, J. Lithium ion battery separators: development and performance characterization of a composite membrane. J. Membr. Sci. 2013, 425–426, 163–168.

    Article  Google Scholar 

  35. Shi, C.; Zhang, P.; Huang, S.; He, X.; Yang, P.; Wu, D.; Sun, D.; Zhao, J. Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries. J. Power Sources 2015, 298, 158–165.

    Article  CAS  Google Scholar 

  36. Yu, B. C.; Park, K.; Jang, J. H.; Goodenough, J. B. Cellulose-based porous membrane for suppressing Li dendrite formation in lithium-sulfur battery. ACS Energy Lett. 2016, 1, 633–637.

    Article  CAS  Google Scholar 

  37. Shi, J.; Hu, H.; Xia, Y.; Liu, Y.; Liu, Z. Polyimide matrix-enhanced cross-linked gel separator with three-dimensional heat-resistance skeleton for high-safety and high-power lithium ion batteries. J. Mater. Chem. A 2014, 2, 9134–9141.

    Article  CAS  Google Scholar 

  38. Tan, J.; Kong, L.; Qiu, Z.; Yan, Y. Flexible, high-wettability and thermostable separator based on fluorinated polyimide for lithium-ion battery. J. Solid State Electrochem. 2018, 22, 3363–3373.

    Article  CAS  Google Scholar 

  39. Zhang, H.; Lin, C. E.; Zhou, M. Y.; John, A. E.; Zhu, B. K. High thermal resistance polyimide separators prepared via soluble precusor and non-solvent induced phase separation process for lithium ion batteries. Electrochim. Acta 2016, 187, 125–133.

    Article  CAS  Google Scholar 

  40. Li, D.; Wang, H.; Luo, L.; Zhu, J.; Li, J.; Liu, P.; Yu, Y.; Jiang, M. Electrospun separator based on sulfonated polyoxadiazole with outstanding thermal stability and electrochemical properties for lithium-ion Batteries. ACS Appl. Energy Mater. 2021, 4, 879–887.

    Article  CAS  Google Scholar 

  41. Lin, C. E.; Zhang, H.; Song, Y. Z.; Zhang, Y.; Yuan, J. J.; Zhu, B. K. Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery. J. Mater. Chem. A 2011, 6, 991–998.

    Article  Google Scholar 

  42. Dhara, M. G.; Banerjee, S. Fluorinated high-performance polymers: poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups. Prog. Polym. Sci. 2010, 35, 1022–1077.

    Article  CAS  Google Scholar 

  43. Zhai, L.; Yang, S.; Fan, L. Preparation and characterization of highly transparent and colorless semi-aromatic polyimide films derived from alicyclic dianhydride and aromatic diamines. Polymer 2012, 53, 3529–3539.

    Article  CAS  Google Scholar 

  44. Qiu, W.; Chen, C. C.; Xu, L.; Cui, L.; Paul, D. R.; Koros, W. J. Sub-Tg cross-linking of a polyimide membrane for enhanced CO2 plasticization resistance for natural gas separation. Macromolecules 2011, 44, 6046–6056.

    Article  CAS  Google Scholar 

  45. Shi, J. L.; Fang, L. F.; Li, H.; Zhang, H.; Zhu, B. K.; Zhu, L. P. Improved thermal and electrochemical performances of PMMA modified PE separator skeleton prepared via dopamine-initiated ATRP for lithium ion batteries. J. Membr. Sci. 2013, 437, 160–168.

    Article  CAS  Google Scholar 

  46. Miao, Y. E.; Zhu, G. N.; Hou, H.; Xia, Y. Y.; Liu, T. Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J. Power Sources 2013, 226, 82–86.

    Article  CAS  Google Scholar 

  47. Kong, L.; Yan, Y.; Qiu, Z.; Zhou, Z.; Hu, J. Robust fluorinated polyimide nanofibers membrane for high-performance lithium-ion batteries. J. Membr. Sci. 2018, 549, 321–331.

    Article  CAS  Google Scholar 

  48. Luo, X.; Lu, X.; Chen, X.; Chen, Y.; Song, C.; Yu, C.; Wang, N.; Su, D.; Wang, C.; Gao, X.; Wang, G.; Cui, L. A robust flame retardant fluorinated polyimide nanofiber separator for high-temperature lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 14788–14798.

    Article  CAS  Google Scholar 

  49. Hussain, A.; Li, D.; Luo, Y.; Zhang, H.; Zhang, H.; Li, X. Porous membrane with improved dendrite resistance for high-performance lithium metal-based battery. J. Membr. Sci. 2020, 605, 118108.

    Article  CAS  Google Scholar 

  50. Wang, Q.; Yang, J.; Wang, Z.; Shi, L.; Zhao, Y.; Yuan, S. Dual-scale Al2O3 particles coating for high-performance separator and lithium metal anode. Energy Technol. 2020, 8, 1901429.

    Article  CAS  Google Scholar 

  51. Wang, Y.; Shi, L.; Zhou, H.; Wang, Z.; Li, R.; Zhu, J.; Qiu, Z.; Zhao, Y.; Zhang, M.; Yuan, S. Polyethylene separators modified by ultrathin hybrid films enhancing lithium ion transport performance and Li-metal anode stability. Electrochim. Acta 2018, 259, 386–394.

    Article  CAS  Google Scholar 

  52. Xu, W.; Wang, Z.; Shi, L.; Ma, Y.; Yuan, S.; Sun, L.; Zhao, Y.; Zhang, M.; Zhu, J. Layer-by-layer deposition of organic-inorganic hybrid multilayer on microporous polyethylene separator to enhance the electrochemical performance of lithium-ion battery. ACS Appl. Mater. Interfaces 2015, 7, 20678–20686.

    Article  CAS  PubMed  Google Scholar 

  53. Mao, X.; Shi, L.; Zhang, H.; Wang, Z.; Zhu, J.; Qiu, Z.; Zhao, Y.; Zhang, M.; Yuan, S. Polyethylene separator activated by hybrid coating improving Li+ ion transference number and ionic conductivity for Li-metal battery. J. Power Sources 2017, 342, 816–824.

    Article  CAS  Google Scholar 

  54. Song, Y. Z.; Yuan, J. J.; Yin, X.; Zhang, Y.; Lin, C. E.; Sun, C. C.; Fang, L. F.; Zhu, B.; Zhu, L. P. Effect of polyphenol-polyamine treated polyethylene separator on the ionic conduction and interface properties for lithium-metal anode batteries. J. Electroanal. Chem. 2018, 816, 68–74.

    Article  CAS  Google Scholar 

  55. Li, D.; Shi, D.; Xia, Y.; Qiao, L.; Li, X.; Zhang, H. Superior thermally stable and nonflammable porous polybenzimidazole membrane with high wettability for high-power lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 8742–8750.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, Y.; Wang, Z.; Xiang, H.; Shi, P.; Wang, H. A thin inorganic composite separator for lithium-ion batteries. J. Membr. Sci. 2016, 509, 19–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. U21A2087, 51903038 and 21975040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhao.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2678_MOESM1_ESM.pdf

Construction of Safety and Non-flammable Polyimide Separator Containing Carboxyl Groups for Advanced Fast Charing Lithium-ion Batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, JP., Zhang, KY., Li, XT. et al. Construction of Safety and Non-flammable Polyimide Separator Containing Carboxyl Groups for Advanced Fast Charing Lithium-ion Batteries. Chin J Polym Sci 40, 345–354 (2022). https://doi.org/10.1007/s10118-022-2678-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2678-4

Keywords

Navigation