Skip to main content
Log in

Nonvolatile resistive switching characteristics based on Ni–Al LDHs and its electronic synapse application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Future artificial intelligence circuits will require expandable electronic synapses with extremely high bit density and computing speed. In this regard, the nanostructure of two-dimensional materials achieves the goal and provides device scalability in both horizontal and vertical dimensions. In this work, we report the nonvolatile bipolar resistive switching characteristics of Ni–Al layer double hydroxide (LDH)-adsorbed thiadiazole memristors. The Ni–Al LDH-adsorbed thiadiazole memristors implement a progressive reduction process and can be used to simulate the “learning” and “forgetting” functions of biological synapses. At the same positive and negative voltage pulse width, multiple resistance stages can be observed for continuous pulse number. In addition, the application of pulse train operation scheme is an effective method to control the simulated synaptic devices during the reset process, which helps understand the nature of the evolution of conductive nanofilaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Pei, Z. Zhou, A.P. Chen, J. Chen, X. Yan, A carbon-based memristor design for associative learning activities and neuromorphic computing. Nanoscale 12, 13531 (2020)

    Article  CAS  Google Scholar 

  2. R.S. Zucker, W.G. Regehr, Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002)

    Article  CAS  Google Scholar 

  3. A. Thomas, A.N. Resmi, A. Ganguly, K.B. Jinesh, Programmable electronic synapse and nonvolatile resistive switches using MoS2 quantum dots. Sci. Rep. 10, 12450 (2020)

    Article  CAS  Google Scholar 

  4. Y. Yuan, X. Cao, Y. Sun, J. Su, C. Liu, L. Cheng, Y. Li, L. Yuan, H. Zhang, J. Li, Intrinsic mechanism in nonvolatile polycrystalline zirconium oxide sandwiched structure. J Mater Sci: Mater Electron 29, 2301–2306 (2018)

    CAS  Google Scholar 

  5. H.-L. Park, Y. Lee, N. Kim, D.-G. Seo, G.-T. Go, T.-W. Lee, Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Adv. Mater. 15, 1903558 (2019)

    Google Scholar 

  6. J. Zhu, Y. Yang, R. Jia, Z. Liang, W. Zhu, Z.U. Rehman, L. Bao, X. Zhang, Y. Cai, L. Song, R. Huang, Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30, 1800195 (2018)

    Article  Google Scholar 

  7. X. Yan, Q. Zhao, A.P. Chen, J. Zhao, Z. Zhou, J. Wang, H. Wang, L. Zhang, X. Li, Z. Xiao, K. Wang, C. Qin, G. Wang, Y. Pei, H. Li, D. Ren, J. Chen, Q. Liu, Vacancy induced synaptic behavior in 2D WS2 nanosheet-based memristor for low power neuromorphic computing. Small 15, 1901423 (2019)

    Article  Google Scholar 

  8. S. Wang, C. Chen, Z. Yu, Y. He, X. Chen, Q. Wan, Y. Shi, D. Wei Zhang, H. Zhou, X. Wang, P. Zhou, AMoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 31, 1806227 (2019)

    Article  Google Scholar 

  9. J.D. Meindl, Limits on silicon nanoelectronics for terascale integration. Science 293, 2044–2049 (2001)

    Article  CAS  Google Scholar 

  10. S.H. Jo, W. Lu, CMOS Compatible nanoscale nonvolatile resistance switching memory. Nano Lett. 8, 392–397 (2008)

    Article  CAS  Google Scholar 

  11. R. Guo, W. Lin, X. Yan, T. Venkatesan, J. Chen, Ferroic tunnel junctions and their application in neuromorphic networks. Appl. Phys. Rev. 7, 011304 (2020)

    Article  CAS  Google Scholar 

  12. S.H. Jo, K.-H. Kim, W. Lu, Programmable resistance switching in nanoscale two-terminal devices. Nano Lett. 9, 496–500 (2009)

    Article  CAS  Google Scholar 

  13. C. Tan, Z. Liu, W. Huang, H. Zhang, Non-volatile resistive memory devices based on solution-processed ultrathin twodimensional nanomaterials. Chem. Soc. Rev. 44, 2615–2628 (2015)

    Article  CAS  Google Scholar 

  14. Y. Sun, D. Wen, X. Bai, J. Lu, C. Ai, Ternary resistance switching memory behavior based on graphene oxide embedded in a polystyrene polymer layer. Sci. Rep. 7, 3938 (2017)

    Article  Google Scholar 

  15. G. Zhou, Z. Ren, L. Wang, B. Sun, S. Duan, Q. Song, Artificial and wearable albumen protein memristor arrays with integrated memory logic gate functionality. Mater. Horiz. 6, 1877–1882 (2019)

    Article  CAS  Google Scholar 

  16. L. Sun, Y. Zhang, G. Han, G. Hwang, J. Jiang, B. Joo, K. Watanabe, T. Taniguchi, Y.-M. Kim, W.J. Yu, B.-S. Kong, R. Zhao, H. Yang, Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 10, 3161 (2019)

    Article  Google Scholar 

  17. B. Sun, Y. Chen, M. Xiao, G. Zhou, S. Ranjan, W. Hou, X. Zhu, Y. Zhao, S.A.T. Redfern, Y.N. Zhou, A unified capacitive-coupled memristive model for the nonpinched current-voltage hysteresis loop. Nano Lett. 19, 6461–6465 (2019)

    Article  CAS  Google Scholar 

  18. V.K. Sangwan, M.C. Hersam, Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 15, 517–528 (2020)

    Article  CAS  Google Scholar 

  19. G. Zhou, Z. Ren, L. Wang, J. Wu, B. Sun, A. Zhou, G. Zhang, S. Zheng, S. Duan, Q. Song, Resistive switching memory integrated with amorphous carbon-based nanogenerators for self- powered device. Nano Energy 63, 103793 (2019)

    Article  CAS  Google Scholar 

  20. B. Sun, X. Zhang, G. Zhou, P. Li, Y. Zhang, H. Wang, Y. Xia, Y. Zhao, An organic nonvolatile resistive switching memory device fabricated with natural pectin from fruit peel. Org. Electron. 42, 181–186 (2017)

    Article  CAS  Google Scholar 

  21. Y. Sun, D. Wen, Y. Xie, F. Sun, X. Mo, J. Zhu, H. Sun, Logic gate functions built with nonvolatile resistive switching and thermoresponsive memory based on biologic proteins. J. Phys. Chem. Lett. 10, 7745–7752 (2019)

    Article  CAS  Google Scholar 

  22. Y. Sun, D. Wen, Nonvolatile WORM and rewritable multifunctional resistive switching memory devices from poly(4-vinyl phenol) and 2-amino-5-methyl-1,3,4-thiadiazole composite. J. Alloy. Compound. 806, 215–226 (2019)

    Article  CAS  Google Scholar 

  23. Y. Sun, D. Wen, Conductance quantization in nonvolatile resistive switching memory based on the polymer composite of Zinc oxide nanoparticles. J. Phys. Chem. C 122, 10582–10591 (2018)

    Article  CAS  Google Scholar 

  24. Y. Sun, D. Wen, Physically transient random number generators based on flexible carbon nanotube composite threshold switching. J. Alloy. Compound. 844, 156144 (2020)

    Article  CAS  Google Scholar 

  25. B. Sarkar, B. Lee, V. Misra, Understanding the gradual reset in Pt/Al2O3/Ni RRAM for synaptic applications. Semicond. Sci. Technol. 30, 105014 (2015)

    Article  Google Scholar 

  26. J. Li, C. Ge, J. Du, C. Wang, G. Yang, K. Jin, Reproducible ultrathin ferroelectric domain switching for high-performance neuromorphic computing. Adv. Mater. 32, 1905764 (2019)

    Article  Google Scholar 

  27. E. Pérez, Ó.G. Ossorio, S. Dueñas, H. Castán, H. García, C. Wenger, Programming pulse width assessment for reliable and low-energy endurance performance in Al:HfO2-based RRAM arrays. Electronics 9, 864 (2020)

    Article  Google Scholar 

  28. Y.M. Sun, D.Z. Wen, F.Y. Sun, Influence of blending ratio on resistive switching effect in donor–acceptor type composite of PCBM and PVK-based memory devices. Org. Electron. 65, 141–149 (2019)

    Article  CAS  Google Scholar 

  29. J. Lee, W. Schell, X. Zhu, E. Kioupakis, W.D. Lu, Charge transition of oxygen vacancies during resistive switching in oxide-based RRAM. ACS Appl. Mater. Interfaces. 11, 11579–11586 (2019)

    Article  CAS  Google Scholar 

  30. L. Zhao, H.Y. Chen, S.C. Wu, Z. Jiang, S. Yu, T.H. Hou, H.S.P. Wong, Y. Nishi, Multi-level control of conductive nano-filament evolution in HfO2 ReRAM by pulse-train operations. Nanoscale 6, 5698–5702 (2014)

    Article  CAS  Google Scholar 

  31. M. Zahedinejad, A.A. Awad, S. Muralidhar, R. Khymyn, H. Fulara, H. Mazraati, M. Dvornik, J. Åkerman, Two-dimensional mutually synchronized spin hall nano-oscillator arrays for neuromorphic computing. Nat. Nanotechnol. 15, 47–52 (2020)

    Article  CAS  Google Scholar 

  32. T.H. Park, Y.J. Kwon, H.J. Kim, H.C. Wo, G.S. Kim, C.H. An, Y. Kim, D.E. Kwon, C.S. Hwang, Balancing the source and sink of oxygen vacancies for the resistive switching memory. ACS Appl. Mater. Interfaces 27, 21445–21450 (2018)

    Article  Google Scholar 

  33. S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, H.-S. Wong, An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Electron Devices 58, 2729–2737 (2011)

    Article  CAS  Google Scholar 

  34. A. Vincent, J. Larroque, W. Zhao, N.B. Romdhane, D. Querlioz, Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic systems. IEEE Trans. Biomedical Circuits Syst. 9, 166–174 (2015)

    Article  Google Scholar 

  35. V. Chanthbouala, R.O. Garcia, K. Cherifi, S. Bouzehouane, X. Fusil, S. Moya, H. Xavier, C. Yamada, N.D. Deranlot, Mathur a ferroelectric memristor. Nature Mater. 11, 860–864 (2012)

    Article  CAS  Google Scholar 

  36. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)

    Article  CAS  Google Scholar 

  37. L. Jackson, B. Rajendran, G.S. Corrado, M. Breitwisch, D.S. Modha, Nano-scale electronic synapses using phase change devices. ACM J. Emerg. Technol. Comput. 9(1), 20 (2013)

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos. 62065001, 61761048), and partially supported by Yunnan Fundamental Research Projects (Grant No. 202001BA070001-060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enming Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, E., Liu, G., Xing, C. et al. Nonvolatile resistive switching characteristics based on Ni–Al LDHs and its electronic synapse application. J Mater Sci: Mater Electron 32, 9938–9945 (2021). https://doi.org/10.1007/s10854-021-05651-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05651-w

Navigation