Skip to main content

Advertisement

Log in

A novel carbon nanotubes@porous carbon/sulfur composite as efficient electrode material for high-performance lithium-sulfur battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Herein, we reported a novel carbon nanotubes@porous carbon/sulfur (CNT@PC/S) composite with huge specific capacity for rechargeable lithium-sulfur battery. The porous carbon has a large surface area and appropriate pore size which derived from the aluminum-based metal-organic framework (Al-MOF). The obtained electrochemical results show the CNT@PC/S composite with 50% of sulfur content displays superior discharge specific capacity of 424 mAh g−1 after 100 cycles at a rate of 0.5 C with a better coulombic efficiency of 98%. Furthermore, the optimized CNT@PC/S composite offered a large discharge specific capacity of 271.2 mAh g−1 using ultra-fast rate of 2 C. The pore structure of CNT@PC encapsulates with the elemental sulfur, which is efficiently inhibiting the diffusion of polysulfide ions in electrolyte, resulting in the greatly improve the ability of volume changes during the charge-discharge process. Therefore, the as-prepared CNT@PC/S composite can be a talented cathode material for lithium-sulfur battery and other electrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhong Y, Xia X, Deng S, Zhan J, Fang R, Xia Y, Wang X, Zhang Q, Tu J (2018) Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium-sulfur batteries. Adv Energy Mater 8:1–8

    Article  CAS  Google Scholar 

  2. Que LF, Yu FD, Wang ZB, Gu DM (2018) Pseudocapacitance of TiO2-x/CNT anodes for high-performance quasi-solid-state Li-ion and Na-ion capacitors. Small 14:1704508

    Article  CAS  Google Scholar 

  3. Chang CH, Chung SH, Manthiram A (2017) Transforming waste newspapers into nitrogen-conducting interlayers for advanced Li-S batteries. Sustain Energy Fuels 1:444–449

    Article  CAS  Google Scholar 

  4. Tan SJ, Zeng XX, Ma Q, Wu XW, Guo YG (2018) Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochem Energy Rev 1:113–138

    Article  CAS  Google Scholar 

  5. Pang Y, Wei J, Wang Y, Xia Y (2018) Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium-sulfur batteries. Adv Energy Mater 8:1–11

    Google Scholar 

  6. Tsou WT, Wu CY, Yang H, Duh JG (2018) Improving the electrochemical performance of lithium-sulfur batteries using an Nb-doped TiO2 additive layer for the chemisorption of lithium polysulfides. Electrochim Acta 285:16–22

    Article  CAS  Google Scholar 

  7. Li Z, Ma Z, Wang Y, Chen R, Wu Z, Wang S (2018) LDHs derived nanoparticle-stacked metal nitride as interlayer for long-life lithium sulfur batteries. Sci Bull 63:169–175

    Article  CAS  Google Scholar 

  8. Yang X, Li X, Adair K, Zhang H, Sun X (2018) Structural design of lithium-sulfur batteries: from fundamental research to practical application. Electrochem Energy Rev 1:239–293

    Article  CAS  Google Scholar 

  9. Wen X, Xiang K, Zhu Y, Xiao L, Chen X, Chen H (2018) Preparation of Mn3O4-CNTs microspheres as an improved sulfur hosts for lithium-sulfur batteries. Mater Lett 229:272–276

    Article  CAS  Google Scholar 

  10. Wang C, Niu Y, Jiang J, Chen Y, Tian H, Zhang R, Zhou T, Xia J, Pan Y, Wang S (2018) Hybrid thermoelectric battery electrode FeS2 study. Nano Energy 45:432–438

    Article  CAS  Google Scholar 

  11. Li B, Xiao Q, Luo Y (2018) A modified synthesis process of three-dimensional sulfur/graphene aerogel as binder-free cathode for lithium-sulfur batteries. Mater Des 153:9–14

    Article  CAS  Google Scholar 

  12. Yoshida CK, Mochida K, Nakaya M, Mizutani T, Matsuo I (2018) Cytoplasmic localization of GRHL3 upon epidermal differentiation triggers cell shape change for epithelial morphogenesis. Nat Commun 9:4059

    Article  CAS  Google Scholar 

  13. C. Li, Z.B. Wang, Q. Wang, D.M. Gu, Recent advances in cathode materials for Li-S battery: structure and performance 36 (2017) 365–380

  14. Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H (2011) Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11:2644–2647

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Ma Z, Liu D, Dou S, Ma J, Zhang M, Guo Z, Chen R, Wang S (2017) P-type SnO thin layers on n-type SnS2 nanosheets with enriched surface defects and embedded charge transfer for lithium ion batteries. J Mater Chem A 5:512–518

    Article  CAS  Google Scholar 

  16. Ma Z, Dou S, Shen A, Tao L, Dai L, Wang S (2014) Sulfur-doped graphene derived from cycled lithium-sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed 54:1888–1892

    Article  CAS  Google Scholar 

  17. Song MK, Cairns EJ, Zhang Y (2013) Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale 5:2186

    Article  CAS  PubMed  Google Scholar 

  18. Osman S, Senthil RA, Pan J, Sun Y (2019) A novel coral structured porous-like amorphous carbon derived from zinc based fluorinated metal-organic framework as superior cathode material for high performance supercapacitors. J Power Sources 414:401–411

    Article  CAS  Google Scholar 

  19. Wang Q, Liu H, Li R, Yang M, Wang ZB, Zhang L, Li C, Gu DM (2017) Clustered-microcapsule-shaped microporous carbon coated sulfur composite synthesized via in-situ oxidation. ACS Appl Mater Interfaces 9:44512–44518

    Article  CAS  PubMed  Google Scholar 

  20. Jiang W, Pan J, Liu X (2019) A novel rod-like porous carbon with ordered hierarchical pore structure prepared from Al-based metal-organic framework without template as greatly enhanced performance for supercapacitor. J Power Sources 409:13–23

    Article  CAS  Google Scholar 

  21. You Y, Zeng W, Yin YX, Zhang J, Yang CP, Zhu Y, Guo YG (2015) Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li-S batteries. J Mater Chem A 3:4799–4802

    Article  CAS  Google Scholar 

  22. Tao X, Chen X, Xia Y, Huang H, Gan Y, Wu R, Chen F, Zhang W (2013) Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium-sulfur batteries. J Mater Chem A 1:3295–3301

    Article  CAS  Google Scholar 

  23. Bao W, Zhang Z, Qua Y, Zhou C, Wanga X, Li J (2014) Confine sulfur in mesoporous metal-organic framework@reduced graphene oxide for lithium sulfur battery. J Alloys Compd 582:334–340

    Article  CAS  Google Scholar 

  24. Wang Q, Wang ZB, Li C, Gu DM (2017) High sulfur content microporous carbon coated sulfur composite synthesized via in-situ oxidation of metal sulfide for high-performance Li/S battery. J Mater Chem A 5:6052–6059

    Article  CAS  Google Scholar 

  25. Zhou J, Li R, Fan X, Chen Y, Han R, Li W, Zheng J, Wang B, Li X (2014) Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries. Energy Environ Sci 7:2715–2724

    Article  CAS  Google Scholar 

  26. Osman S, Senthil RA, Pan J, Li W (2018) Highly activated porous carbon with 3D microspherical structure and hierarchical pores as greatly enhanced cathode material for highperformance supercapacitors. J Power Sources 391:162–169

    Article  CAS  Google Scholar 

  27. Demir-Cakan R, Morcrette M, Nouar F, Davoisne C, Devic T, Gonbeau D, Dominko R, Serre C, Férey G, Tarascon JM (2011) Cathode composites for Li-S batteries via the use of oxygenated porous architectures. J Am Chem Soc 133:16154–16160

    Article  CAS  PubMed  Google Scholar 

  28. Xi K, Cao S, Peng X, Ducati C, Vasant Kumar R, Cheetham AK (2013) Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries. Chem Commun 49:2192–2194

    Article  CAS  Google Scholar 

  29. Xu G, Ding B, Shen L, Nie P, Han J, Zhang X (2013) Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery. J Mater Chem A 1:4490–4496

    Article  CAS  Google Scholar 

  30. Wang D, Yu Y, Zhou W, Chen H, Disalvo FJ, Muller DA, Abruña HD (2013) Infiltrating sulfur in hierarchical architecture MWCNT@meso C core-shell nanocomposites for lithium-sulfur batteries. Phys Chem Chem Phys 15:9051–9057

    Article  CAS  PubMed  Google Scholar 

  31. Wu R, Wang DP, Rui X, Liu B, Zhou K, Law AWK, Yan Q, Wei J, Chen Z (2015) In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv Mater 27:3038–3044

    Article  CAS  PubMed  Google Scholar 

  32. Wu R, Qian X, Zhou K, Wei J, Lou J, Ajayan PM (2014) Porous spinel ZnxCo3-xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8:6297–6303

    Article  CAS  PubMed  Google Scholar 

  33. Qian X, Jin L, Wang S, Yao S, Rao D, Shen X, Xi X, Xiang J (2016) Zn-MOF derived micro/meso porous carbon nanorod for high performance lithium-sulfur battery. RSC Adv 6:94629–94635

    Article  CAS  Google Scholar 

  34. Zhang SS (2016) A new finding on the role of LiNO3 in lithium-sulfur battery. J Power Sources 322:99–105

    Article  CAS  Google Scholar 

  35. Zhang SS (2012) Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim Acta 70:344–348

    Article  CAS  Google Scholar 

  36. Vidano R, Fischbach DB (1978) New lines in the Raman spectra of carbons and graphite. J Am Ceram Soc 61:13–17

    Article  CAS  Google Scholar 

  37. Striebel K, Shim J, Sierra A, Yang H, Song X, Kostecki R, McCarthy K (2005) The development of low cost LiFePO4-based high power lithium-ion batteries. J Power Sources 146:33–38

    Article  CAS  Google Scholar 

  38. Li J, Peng B, Zhou G, Zhang Z, Lai Y, Jia M (2012) Partially cracked carbon nanotubes as cathode materials for lithium-air batteries. ECS Electrochem Lett 2:A25–A27

    Article  CAS  Google Scholar 

  39. Sun Y, Guo S, Li W, Pan J, Fernandez C, Senthil RA, Sun X (2018) A green and template-free synthesis process of superior carbon material with ellipsoidal structure as enhanced material for supercapacitors. J Power Sources 405:80–88

    Article  CAS  Google Scholar 

  40. Zhang W, Qiao D, Pan J, Cao Y, Yang H, Ai X (2013) A Li+-conductive microporous carbon-sulfur composite for Li-S batteries. Electrochim Acta 87:497–502

    Article  CAS  Google Scholar 

  41. Xin S, Gu L, Zhao NH, Yin YX, Zhou LJ, Guo YG, Wan LJ (2012) Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc 134:18510–18513

    Article  CAS  PubMed  Google Scholar 

  42. Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MSP, Windle AH, Friend RH (1999) Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B 103:8116–8121

    Article  CAS  Google Scholar 

  43. Ding B, Yuan C, Shen L, Xu G, Nie P, Lai Q, Zhang X (2013) Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium-sulfur batteries. J Mater Chem A 1:1096–1101

    Article  CAS  Google Scholar 

  44. Ji L, Rao M, Zheng H, Zhang L, Li OY, Duan W (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/surfur cells. J Am Chem Soc 133:18522–18525

    Article  CAS  PubMed  Google Scholar 

  45. Zhang L, Ji L, Glans PA, Zhang Y, Zhu J, Guo J (2012) Electronic structure and chemical bonding of a graphene oxide-sulfur nanocomposite for use in superior performance lithium-sulfur cells. Phys Chem Chem Phys 14:13670–13675

    Article  CAS  PubMed  Google Scholar 

  46. Guo B, Ben T, Bi Z, Veith GM, Sun XG, Qiu S, Dai S (2013) Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium-sulfur batteries. Chem Commun 49:4905–4907

    Article  CAS  Google Scholar 

  47. Zhang G, Sun S, Yang D, Dodelet JP, Sacher E (2008) The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment. Carbon 46:196–205

    Article  CAS  Google Scholar 

  48. Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J Phys Chem C 115:17009–17019

    Article  CAS  Google Scholar 

  49. Ding ZW, Zhao DL, Yao RR, Li C, Cheng XW, Hu T (2018) Polyaniline@spherical ordered mesoporous carbon/sulfur nanocomposites for high-performance lithium-sulfur batteries. Int J Hydrog Energy 43:10502–10510

    Article  CAS  Google Scholar 

  50. Cheon SE, Choi SS, Han JS, Choi YS, Jung BH, Lim HS (2004) Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode. J Electrochem Soc 151:A2067–A2073

    Article  CAS  Google Scholar 

  51. Bai S, Zhu K, Wu S, Wang Y, Yi J, Ishida M, Zhou H (2016) A long-life lithium-sulphur battery by integrating zinc-organic framework based separator. J Mater Chem A 4:16812–16817

    Article  CAS  Google Scholar 

  52. Wu Y, Gao M, Li X, Liu Y, Pan H (2014) Preparation of mesohollow and microporous carbon nanofiber and its application in cathode material for lithium-sulfur batteries. J Alloys Compd 608:220–228

    Article  CAS  Google Scholar 

  53. Miao LX, Wang WK, Wang AB, Yuan KG, Yang YS (2013) A high sulfur content composite with core-shell structure as cathode material for Li-S batteries. J Mater Chem A 1:11659–11664

    Article  CAS  Google Scholar 

  54. Yu L, Brun N, Sakaushi K, Eckert J, Titirici MM (2013) Hydrothermal nanocasting: synthesis of hierarchically porous carbon monoliths and their application in lithium-sulfur batteries. Carbon 61:245–253

    Article  CAS  Google Scholar 

  55. Deng Z, Zhang Z, Lai Y, Liu J, Li J, Liu Y (2013) Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading. J Electrochem Soc 160:A553–A558

    Article  CAS  Google Scholar 

  56. Zhou G, Yin L, Wang D, Li L, Pei S, Gentle IR, Li F, Cheng HM (2013) Fibrous hybrid of graphene and sulfur nanocrystals for high-performance. ACS Nano 7:5367–5375

    Article  CAS  PubMed  Google Scholar 

  57. Zheng J, Tian J, Wu D, Gu M, Xu W, Wang C, Gao F (2014) Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett 14:2345–2352

    Article  CAS  PubMed  Google Scholar 

  58. Hou Y, Mao H, Xu L (2017) MIL-100 (V) and MIL-100 (V)/ rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium-sulfur batteries. Nano Res 10:344–353

    Article  CAS  Google Scholar 

  59. Tang H, Pro A, Yao S, Jing M, Wu X, Hou J, Qian X, Rao D, Shen PX, Xi X, Xiao K (2015) Mg0.6Ni0.4O hollow nanofibers prepared by electrospinning as additive for improving electrochemical performance of lithium-sulfur batteries. J Alloys Compd 25:351–356

    Article  CAS  Google Scholar 

  60. Zhang B, Lai C, Zhou Z, Gao XP (2009) Preparation and electrochemical properties of sulphur-acetylene black composites as cathode materials. Electrochim Acta 54:3708–3713

    Article  CAS  Google Scholar 

  61. Online VA, Zhang Z, Jing H, Liu S, Li G, Gao X (2015) Encapsulating sulfur into a hybrid porous carbon/CNT substrate as a cathode for lithium-sulphur batteries. J Mater Chem A 3:6827–6834

    Article  CAS  Google Scholar 

  62. Wang JL, Yang J, Xie JY, Xu NX, Li Y (2002) Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochem Commun 4:499–502

    Article  CAS  Google Scholar 

  63. Tao X, Wang J, Ying Z, Cai Q, Zheng G, Gan Y, Huang H, Xia Y, Liang C, Zhang W, Cui Y (2014) Strong sulfur binding with conducting magnéli-phase TinO2n–1 nanomaterials for improving lithium-sulfur batteries. Nano Lett 14:5288–5294

    Article  CAS  PubMed  Google Scholar 

  64. Yue Y, Guo B, Qiao Z, Fulvio PF, Chen J, Binder AJ, Tian C, Dai S (2014) Multi-wall carbon nanotube @ zeolite imidazolate framework composite from a nanoscale zinc oxide precursor. Microporous Mesoporous Mater 198:139–143

    Article  CAS  Google Scholar 

  65. Yu X, Xie J, Yang J, Wang K (2004) All solid-state rechargeable lithium cells based on nano-sulfur composite cathodes. J Power Sources 132:181–186

    Article  CAS  Google Scholar 

  66. Shi-chao Z, Lan Z, Wei-kun W, Wen-juan X (2010) A novel cathode material based on polyaniline used for lithium/sulfur secondary battery. Synt Metals 160:2041–2044

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China (21676022 & 21706004), and the Fundamental Research Funds for the Central Universities (BHYC1701A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junqing Pan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Senthil, R.A., Pan, J. et al. A novel carbon nanotubes@porous carbon/sulfur composite as efficient electrode material for high-performance lithium-sulfur battery. Ionics 25, 4761–4773 (2019). https://doi.org/10.1007/s11581-019-03049-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03049-7

Keywords

Navigation