Skip to main content

Advertisement

Log in

Facile synthesis of a hierarchical manganese oxide hydrate for superior lithium-ion battery anode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Manganese oxides have always been considered as promising high-performance electrodes due to the high specific capacity, low cost, and environmental benignity. Here, we have synthesized a hierarchical manganese oxide hydrate for superior lithium-ion battery anode via a facile liquid precipitation reaction and low-temperature heat treatment. The 2D layered structure with hydration water provides a smooth ion transfer path, while the porous hierarchical architecture constructed of nanosheets with high surface area increases active contact areas, Li+ transportation channels, and structural stability. Upon cycling, the oxidation of manganese and enhanced reaction kinetics can further contribute to the obvious rising capacity, cycling stability, and high-rate capability. Therefore, the manganese oxide hydrate can directly be the desirable products as superior electrodes without high-temperature heat treatment. The comprehensive utilization of structural hydration and hierarchical design offers more insights into the electrochemical reaction mechanisms and more possibilities to develop new materials for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nitta N, Wu F, Jung TL, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264

    Article  CAS  Google Scholar 

  2. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  PubMed  Google Scholar 

  3. Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699

    Article  CAS  Google Scholar 

  4. Yu S, Lee SH, Lee DJ, Sung Y, Hyeon T (2016) Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 12:2146–2172

    Article  CAS  PubMed  Google Scholar 

  5. Zhu G, Wang L, Lin H, Ma L, Zhao P, Hu Y, Chen T, Chen R, Wang Y, Tie Z, Liu J, Jin Z (2018) Walnut-like multicore-Shell MnO encapsulated nitrogen-rich carbon nanocapsules as anode material for long-cycling and soft-packed Lithium-ion batteries. Adv Funct Mater 28:1800003

    Article  CAS  Google Scholar 

  6. Jiang Y, Yue J, Guo Q, Xia Q, Zhou C, Feng T, Xu J, Xia H (2018) Highly porous Mn3O4 micro/Nanocuboids with in situ coated carbon as advanced anode material for Lithium-ion batteries. Small 14:1704296

    Article  CAS  Google Scholar 

  7. Zhang Y, Li J, Wu Z, Huang L, Sun S (2017) Synthesis of hierarchical spindle-like Mn2O3 for lithium ion batteries with enhanced lithium storage properties. J Alloys Compd 721:229–235

    Article  CAS  Google Scholar 

  8. Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for li ion batteries. Chem Rev 113:5364–5457

    Article  CAS  PubMed  Google Scholar 

  9. Wang S, Quan W, Zhu Z, Yang Y, Liu Q, Ren Y, Zhang X, Xu R, Hong Y, Zhang Z, Amine K, Tang Z, Lu J, Li J (2017) Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries. Nat Commun 8:627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang C, Li Y, Wang S, Zhang Z, Tang Z (2018) Hierarchical hydrated WO3·0.33H2O/graphene composites with improved lithium storage. Electrochim Acta 278:290–301

    Article  CAS  Google Scholar 

  11. Xu R, Li J, Tan A, Tang Z, Zhang Z (2011) Novel lithium titanate hydrate nanotubes with outstanding rate capabilities and long cycle life. J Power Sources 196:2283–2288

    Article  CAS  Google Scholar 

  12. Lee HJ, Shin J, Choi JW (2018) Intercalated water and organic molecules for electrode materials of rechargeable batteries. Adv Mater 30:1705851

    Article  CAS  Google Scholar 

  13. Nam KW, Kim S, Yang E, Jung Y, Levi E, Aurbach D, Choi JW (2015) Critical role of crystal water for a layered cathode material in sodium ion batteries. Chem Mater 27:3721–3725

    Article  CAS  Google Scholar 

  14. Thapa AK, Pandit B, Thapa R, Luitel T, Paudel HS, Sumanasekera G, Sunkara MK, Gunawardhana N, Ishihara T, Yoshio M (2014) Synthesis of mesoporous birnessite-MnO2 composite as a cathode electrode for lithium battery. Electrochim Acta 116:188–193

    Article  CAS  Google Scholar 

  15. Li S, Zhao Y, Liu Z, Yang L, Zhang J, Wang M, Che R (2018) Flexible graphene-wrapped carbon nanotube/graphene@MnO2 3D multilevel porous film for high-performance Lithium-ion batteries. Small 14:1801007

    Article  CAS  Google Scholar 

  16. Zhang X, Yu P, Zhang H, Zhang D, Sun X, Ma Y (2013) Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochim Acta 89:523–529

    Article  CAS  Google Scholar 

  17. Cong L, Xie H, Li J (2017) Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries. Adv Energy Mater 7:1601906

    Article  CAS  Google Scholar 

  18. Wang Y, Li H, He P, Hosono E, Zhou H (2010) Nano active materials for lithium-ion batteries. Nanoscale 2:1294–1305

    Article  CAS  PubMed  Google Scholar 

  19. Sun W, Liu H, Liu Y, Bai G, Liu W, Guo S, Zhao XZ (2015) A general strategy to construct uniform carbon-coated spinel LiMn2O4 nanowires for ultrafast rechargeable lithium-ion batteries with a long cycle life. Nanoscale 7:13173–13180

    Article  CAS  PubMed  Google Scholar 

  20. Jiang C, Tang Z, Deng S, Hong Y, Wang S, Zhang Z (2017) High-performance carbon-coated mesoporous LiMn2O4 cathode materials synthesized from a novel hydrated layered-spinel lithium manganate composite. RSC Adv 7:3746–3751

    Article  CAS  Google Scholar 

  21. Liu L, Feng Q, Yanagisawa K, Bignall G, Hashida T (2002) Lithiation reactions of Zn- and Li-birnessites in non-aqueous solutions and their stabilities. J Mater Sci 37:1315–1320

    Article  CAS  Google Scholar 

  22. Maiti S, Pramanik A, Mahanty S (2014) Interconnected network of MnO2 nanowires with a “Cocoonlike” morphology: redox couple-mediated performance enhancement in symmetric aqueous supercapacitor. Acs Appl Mater Interfaces 6:10754–10762

    Article  CAS  PubMed  Google Scholar 

  23. Huang M, Zhang Y, Li F, Zhang L, Ruoff RS, Wen Z, Liu Q (2014) Self-assembly of mesoporous nanotubes assembled from interwoven ultrathin birnessite-type MnO2 nanosheets for asymmetric supercapacitors. Sci Rep 4:3878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qiu G, Huang H, Genuino H, Opembe N, Stafford L, Dharmarathna S, Suib SL (2011) Microwave-assisted hydrothermal synthesis of nanosized α-Fe2O3 for catalysts and adsorbents. J Phys Chem C 115:19626–19631

    Article  CAS  Google Scholar 

  25. Wu S, Wu X, Wang G, Li L, Tang K, Huang K, Feng S, Dong X, Liu Z, Zhao B (2016) High-yield preparation of K-birnessite layered nanoflake. Electrochim Acta 218:66–73

    Article  CAS  Google Scholar 

  26. Gu X, Yue J, Li L, Xue H, Yang J, Zhao X (2015) General synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) hierarchical microspheres as lithium-ion battery anodes. Electrochim Acta 184:250–256

    Article  CAS  Google Scholar 

  27. Liu M, Zhang G, Shen Z, Sun P, Ding D, Chen T (2009) Synthesis and characterization of hierarchically structured mesoporous MnO2 and Mn2O3. Solid State Sci 11:118–128

    Article  CAS  Google Scholar 

  28. Xia H, Lai M, Lu L (2010) Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J Mater Chem 20:6896

    Article  CAS  Google Scholar 

  29. Huang Y, Lin Z, Zheng M, Wang T, Yang J, Yuan F, Lu X, Liu L, Sun D (2016) Amorphous Fe2O3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries. J Power Sources 307:649–656

    Article  CAS  Google Scholar 

  30. Deng J, Chen L, Sun Y, Ma M, Fu L (2015) Interconnected MnO2 nanoflakes assembled on graphene foam as a binder-free and long-cycle life lithium battery anode. Carbon 92:177–184

    Article  CAS  Google Scholar 

  31. Zang J, Ye J, Qian H, Lin Y, Zhang X, Zheng M, Dong Q (2018) Hollow carbon sphere with open pore encapsulated MnO2 nanosheets as high-performance anode materials for lithium ion batteries. Electrochim Acta 260:783–788

    Article  CAS  Google Scholar 

  32. Huang S, Jin J, Cai Y, Li Y, Deng Z, Zeng J, Liu J, Wang C, Hasan T, Su B (2015) Three-dimensional (3D) bicontinuous hierarchically porous Mn2O3 single crystals for high performance Lithium-ion batteries. Sci Rep 5:14686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang S, Cai Y, Jin J, Liu J, Li Y, Wang H, Chen L, Hasan T, Su B (2016) Unique walnut-shaped porous MnO2/C nanospheres with enhanced reaction kinetics for lithium storage with high capacity and superior rate capability. J Mater Chem A 4:4264–4272

    Article  CAS  Google Scholar 

  34. Shi S, Deng S, Zhang M, Zhao M, Yang G (2017) Rapid microwave synthesis of self-assembled hierarchical Mn2O3 microspheres as advanced anode material for lithium ion batteries. Electrochim Acta 224:285–294

    Article  CAS  Google Scholar 

  35. Feng F, Kang W, Yu F, Zhang H, Shen Q (2015) High-rate lithium storage capability of cupric-cobaltous oxalate induced by unavoidable crystal water and functionalized graphene oxide. J Power Sources 282:109–117

    Article  CAS  Google Scholar 

  36. Li C, Gu L, Tsukimoto S, van Aken PA, Maier J (2010) Low-temperature ionic-liquid-based synthesis of nanostructured iron-based fluoride cathodes for lithium batteries. Adv Mater 22:3650–3654

    Article  CAS  PubMed  Google Scholar 

  37. Hao Q, Wang J, Xu C (2014) Facile preparation of Mn3O4 octahedra and their long-term cycle life as an anode material for Li-ion batteries. J Mater Chem A 2:87–93

    Article  CAS  Google Scholar 

  38. Wu Z, Zhou G, Yin L, Ren W, Li F, Cheng H (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131

    Article  CAS  Google Scholar 

  39. Huang S, Zhang Q, Yu W, Yang X, Wang C, Li Y, Su B (2016) Grain boundaries enriched hierarchically mesoporous MnO/carbon microspheres for superior lithium ion battery anode. Electrochim Acta 222:561–569

    Article  CAS  Google Scholar 

  40. Laruelle S, Grugeon S, Poizot P, Dolle M, Dupont L, Tarascon J (2002) On the origin of the extra electrochemical capacity displayed by MOÕLi cells at low potential. J Electrochem Soc 149:A627–A634

    Article  CAS  Google Scholar 

  41. Zhang Y, Chen P, Gao X, Wang B, Liu H, Wu H, Liu H, Dou S (2016) Nitrogen-doped graphene ribbon assembled Core-sheath MnO@graphene scrolls as hierarchically ordered 3D porous electrodes for fast and durable lithium storage. Adv Funct Mater 26:7754–7765

    Article  CAS  Google Scholar 

  42. Sun Y, Hu X, Luo W, Xia F, Huang Y (2013) Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv Funct Mater 23:2436–2444

    Article  CAS  Google Scholar 

  43. Wei Y, Zi Z, Chen B, Zhao B, Zhu X, Liang C, Ma X, Dai J (2018) Facile synthesis of hollow MnO microcubes as superior anode materials for lithium-ion batteries. J Alloys Compd 756:93–102

    Article  CAS  Google Scholar 

  44. Sheng L, Jiang H, Liu S, Chen M, Wei T, Fan Z (2018) Nitrogen-doped carbon-coated MnO nanoparticles anchored on interconnected graphene ribbons for high-performance lithium-ion batteries. J Power Sources 397:325–333

    Article  CAS  Google Scholar 

  45. Hwang KS, Yong TH, Lee CW, Son YS, Hwang JK (1998) Discharge-charge characteristics and performance of Li/ FeOOH (an) battery with PAN-based polymer electrolyte. J Power Sources 75:13–18

    Article  CAS  Google Scholar 

  46. Takami N (1995) Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. J Electrochem Soc 142:371–379

    Article  CAS  Google Scholar 

  47. Liu L, Guo H, Zhou M, Wei Q, Yang Z, Shu H, Yang X, Tan J, Yan Z, Wang X (2013) A comparison among FeF3·3H2O, FeF3·0.33H2O and FeF3 cathode materials for lithium ion batteries: structural, electrochemical, and mechanism studies. J Power Sources 238:501–515

    Article  CAS  Google Scholar 

  48. Li C, Gu L, Tong J, Tsukimoto S, Maier J (2011) A mesoporous iron-based fluoride cathode of tunnel structure for rechargeable lithium batteries. Adv Funct Mater 21:1391–1397

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China projects [grant numbers 51472137, 51772163].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zilong Tang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 403 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Tang, Z. & Zhang, Z. Facile synthesis of a hierarchical manganese oxide hydrate for superior lithium-ion battery anode. Ionics 25, 3577–3586 (2019). https://doi.org/10.1007/s11581-019-02909-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02909-6

Keywords

Navigation