Skip to main content
Log in

Defect-induced deposition of manganese oxides on hierarchical carbon nanocages for high-performance lithium-oxygen batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The cathode of lithium-oxygen (Li-O2) batteries should have large space for high Li2O2 uptake and superior electrocatalytic activity to oxygen evolution/reduction for long lifespan. Herein, a high-performance MnOx/hCNC cathode was constructed by the defect-induced deposition of manganese oxide (MnOx) nanoparticles on hierarchical carbon nanocages (hCNC). The corresponding Li-O2 battery (MnOx/hCNC@Li-O2) exhibited excellent electrocatalytic activity with the low overpotential of 0.73–0.99 V in the current density range of 0.1–1.0 A·g−1. The full discharge capacity and cycling life of MnOx/hCNC@Li-O2 were increased by ∼86.7% and ∼91%, respectively, compared with the hCNC@Li-O2 counterpart. The superior performance of MnOx/hCNC cathode was ascribed to (i) the highly dispersed MnOx nanoparticles for boosting the reversibility of oxygen evolution/reduction reactions, (ii) the interconnecting pore structure for increasing Li2O2 accommodation and facilitating charge/mass transfer, and (iii) the concealed surface defects of hCNC for suppressing side reactions. This study demonstrated an effective strategy to improve the performance of Li-O2 batteries by constructing cathodes with highly dispersed catalytic sites and hierarchical porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  CAS  Google Scholar 

  2. Chen, K.; Yang, D. Y.; Huang, G.; Zhang, X. B. Lithium-air batteries: Air-electrochemistry and anode stabilization. Acc. Chem. Res. 2021, 54, 632–641.

    Article  CAS  Google Scholar 

  3. Wang, B. X.; Wang, X.; Cheng, X. Y.; Zhang, J.; Yan, M. L.; Li, G. C.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Nonmacrocyclic iron(II) soluble redox mediators leading to high-rate Li-O2 battery. CCS Chem. 2020, 3, 1350–1358.

    Article  Google Scholar 

  4. Shen, Z. Z.; Lang, S. Y.; Shi, Y.; Ma, J. M.; Wen, R.; Wan, L. J. Revealing the surface effect of the soluble catalyst on oxygen reduction/evolution in Li-O2 batteries. J. Am. Chem. Soc. 2019, 141, 6900–6905.

    Article  CAS  Google Scholar 

  5. Dou, Y. Y.; Lian, R. Q.; Zhang, Y. T.; Zhao, Y. Y.; Chen, G.; Wei, Y. J.; Peng, Z. Q. Co9S8@carbon porous nanocages derived from a metal-organic framework: A highly efficient bifunctional catalyst for aprotic Li-O2 batteries. J. Mater. Chem. A. 2018, 6, 8595–8603.

    Article  CAS  Google Scholar 

  6. Lu, Y. C.; Gallant, B. M.; Kwabi, D. G.; Harding, J. R.; Mitchell, R. R.; Whittingham, M. S.; Shao-Horn, Y. Lithium-oxygen batteries: Bridging mechanistic understanding and battery performance. Energy Environ. Sci. 2013, 6, 750–768.

    Article  CAS  Google Scholar 

  7. Chao, F. F.; Wang, B. X.; Ren, J. J.; Lu, Y. W.; Zhang, W. R.; Wang, X. Z.; Cheng, L.; Lou, Y. B.; Chen, J. X. Micro-meso-macroporous FeCo-N-C derived from hierarchical bimetallic FeCo-ZIFs as cathode catalysts for enhanced Li-O2 batteries performance. J. Energy Chem. 2019, 35, 212–219.

    Article  Google Scholar 

  8. Fu, J. M.; Guo, X. X.; Huo, H. Y.; Chen, Y.; Zhang, T. Easily decomposed discharge products induced by cathode construction for highly energy-efficient lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2019, 11, 14803–14809.

    Article  CAS  Google Scholar 

  9. Wang, L. J.; Lyu, Z.; Gong, L. L.; Zhang, J.; Wu, Q.; Wang, X. Z.; Huo, F. W.; Huang, W.; Hu, Z.; Chen, W. Ruthenium-functionalized hierarchical carbon nanocages as efficient catalysts for Li-O2 batteries. ChemNanoMat 2017, 3, 415–419.

    Article  CAS  Google Scholar 

  10. Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Bruce, P. G. The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 2013, 135, 494–500.

    Article  Google Scholar 

  11. Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Carbon-based nanocages: A new platform for advanced energy storage and conversion. Adv. Mater. 2020, 32, 1904177.

    Article  CAS  Google Scholar 

  12. Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 2017, 50, 435–444.

    Article  CAS  Google Scholar 

  13. Luo, W. B.; Pham, T. V.; Guo, H. P.; Liu, H. K.; Dou, S. X. Three-dimensional array of TiN@Pt3Cu nanowires as an efficient porous electrode for the lithium-oxygen battery. ACS Nano 2017, 11, 1747–1754.

    Article  CAS  Google Scholar 

  14. Lu, X. Y.; Zhang, L.; Sun, X. L.; Si, W. P.; Yan, C. L.; Schmidt, O. G. Bifunctional Au-Pd decorated MnOx nanomembranes as cathode materials for Li-O2 batteries. J. Mater. Chem. A 2016, 4, 4155–4160.

    Article  CAS  Google Scholar 

  15. Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 2012, 337, 563–566.

    Article  CAS  Google Scholar 

  16. Jiang, Z. L.; Sun, H.; Shi, W. K.; Zhou, T. H.; Hu, J. Y.; Cheng, J. Y.; Hu, P. F.; Sun, S. G. Co3O4 nanocage derived from metal-organic frameworks: An excellent cathode catalyst for rechargeable Li-O2 battery. Nano Res. 2019, 12, 1555–1562.

    Article  CAS  Google Scholar 

  17. Cao, X. C.; Zheng, X. J.; Sun, Z. H.; Jin, C.; Tian, J. H.; Sun, S. R.; Yang, R. Z. Oxygen defect-ridden molybdenum oxide-coated carbon catalysts for Li-O2 battery cathodes. Appl. Catal. B:Environ. 2019, 253, 317–322.

    Article  CAS  Google Scholar 

  18. Ma, Z. P.; Shao, G. J.; Fan, Y. Q.; Wang, G. L.; Song, J. J.; Shen, D. J. Construction of hierarchical a-MnO2 nanowires@ultrathin 5-MnO2 nanosheets core-shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes. ACS Appl. Mater. Interfaces 2016, 8, 9050–9058.

    Article  CAS  Google Scholar 

  19. Zhang, J.; Luan, Y. P.; Lyu, Z.; Wang, L. J.; Xu, L. L.; Yuan, K. D.; Pan, F.; Lai, M.; Liu, Z. L.; Chen, W. Synthesis of hierarchical porous 5-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries. Nanoscale 2015, 7, 14881–14888.

    Article  CAS  Google Scholar 

  20. Zheng, Y.; Gao, R.; Zheng, L. R.; Sun, L. M.; Hu, Z. B.; Liu, X. F. Ultrathin Co3O4 nanosheets with edge-enriched {111} planes as efficient catalysts for lithium-oxygen batteries. ACS Catal. 2019, 9, 3773–3782.

    Article  CAS  Google Scholar 

  21. Lee, Y. J.; Kim, D. H.; Kang, T. G.; Ko, Y.; Kang, K.; Lee, Y. J. Bifunctional MnO2-coated Co3O4 hetero-structured catalysts for reversible Li-O2 batteries. Chem. Mater. 2017, 29, 10542–10550.

    Article  CAS  Google Scholar 

  22. Xing, Y.; Yang, Y.; Chen, R. J.; Luo, M. C.; Chen, N.; Ye, Y. S.; Qian, J.; Li, L.; Wu, F.; Guo, S. J. Strongly coupled carbon nanosheets/molybdenum carbide nanocluster hollow nanospheres for high-performance aprotic Li-O2 battery. Small 2018, 14, 1704366.

    Article  Google Scholar 

  23. Qiu, F. L.; He, P.; Jiang, J.; Zhang, X. P.; Tong, S. F.; Zhou, H. S. Ordered mesoporous TiC-C composites as cathode materials for Li-O2 batteries. Chem. Commun. 2016, 52, 2713–2716.

    Article  CAS  Google Scholar 

  24. Hou, Y. Y.; Wang, J. Z.; Liu, L. L.; Liu, Y. Q.; Chou, S. L.; Shi, D. Q.; Liu, H. K.; Wu, Y. P.; Zhang, W. M.; Chen, J. Mo2C/CNT: An efficient catalyst for rechargeable Li-CO2 batteries. Adv. Funct. Mater. 2017, 27, 1700564.

    Article  Google Scholar 

  25. Yang, C.; Guo, K. K.; Yuan, D. W.; Cheng, J. L.; Wang, B. Unraveling reaction mechanisms of Mo2C as cathode catalyst in a Li-CO2 battery. J. Am. Chem. Soc. 2020, 142, 6983–6990.

    Article  CAS  Google Scholar 

  26. Luo, Y.; Jin, C.; Wang, Z. J.; Wei, M. H.; Yang, C. H.; Yang, R. Z.; Chen, Y.; Liu, M. L. A high-performance oxygen electrode for Li-O2 batteries: Mo2C nanoparticles grown on carbon fibers. J. Mater. Chem. A 2017, 5, 5690–5695.

    Article  CAS  Google Scholar 

  27. Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Chen, Y. H.; Liu, Z.; Bruce, P. G. A stable cathode for the aprotic Li-O2 battery. Nat. Mater. 2013, 12, 1050–1056.

    Article  Google Scholar 

  28. Sun, W. W.; Liu, C.; Li, Y. J.; Luo, S. Q.; Liu, S. K.; Hong, X. B.; Xie, K.; Liu, Y. M.; Tan, X. J.; Zheng, C. Rational construction of Fe2N@C yolk-shell nanoboxes as multifunctional hosts for ultralong lithium-sulfur batteries. ACS Nano 2019, 13, 12137–12147.

    Article  CAS  Google Scholar 

  29. Li, G. R.; Song, J.; Pan, G. L.; Gao, X. P. Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 1680–1683.

    Article  CAS  Google Scholar 

  30. Liu, J. M.; Wang, C. B.; Sun, H. M.; Wang, H.; Rong, F. L.; He, L. H.; Lou, Y. F.; Zhang, S.; Zhang, Z. H.; Du, M. CoOx/CoNy nanoparticles encapsulated carbon-nitride nanosheets as an efficiently trifunctional electrocatalyst for overall water splitting and Zn-air battery. Appl. Catal. B:Environ. 2020, 279, 119407.

    Article  CAS  Google Scholar 

  31. Hosseini-Benhangi, P. H.; Kung, C. H.; Alfantazi, A.; Gyenge, E. L. Controlling the interfacial environment in the electrosynthesis of MnOx nanostructures for high-performance oxygen reduction/evolution electrocatalysis. ACS Appl. Mater. Interfaces 2017, 9, 26771–26785.

    Article  CAS  Google Scholar 

  32. Dai, L. N.; Sun, Q.; Chen, L. N.; Guo, H. H.; Nie, X. K.; Cheng, J.; Guo, J. G.; Li, J. W.; Lou, J.; Ci, L. J. Ag doped urchin-like α-MnO2 toward efficient and bifunctional electrocatalysts for Li-O2 batteries. Nano Res. 2020, 13, 2356–2364.

    Article  CAS  Google Scholar 

  33. Zhang, P.; Sun, D. F.; He, M.; Lang, J. W.; Xu, S.; Yan, X. B. Synthesis of porous δ-MnO2 submicron tubes as highly efficient electrocatalyst for rechargeable Li-O2 batteries. ChemSusChem 2015, 8, 1972–1979.

    Article  CAS  Google Scholar 

  34. Wang, J. J.; Dong, L. B.; Xu, C. J.; Ren, D. Y.; Ma, X. P.; Kang, F. Y. Polymorphous supercapacitors constructed from flexible three-dimensional carbon network/polyaniline/MnO2 composite textiles. ACS Appl. Mater. Interfaces 2018, 10, 10851–10859.

    Article  CAS  Google Scholar 

  35. Qin, Y.; Lu, J.; Du, P.; Chen, Z. H.; Ren, Y.; Wu, T. P.; Miller, J. T.; Wen, J. G.; Miller, D. J.; Zhang, Z. C. et al. In situ fabrication of porous-carbon-supported a-MnO2 nanorods at room temperature: Application for rechargeable Li-O2 batteries. Energy Environ. Sci. 2013, 6, 519–531.

    Article  CAS  Google Scholar 

  36. Ma, Z. P.; Jing, F. Y.; Fan, Y. Q.; Hou, L. Y.; Su, L.; Fan, L. K.; Shao, G. J. High-stability MnOx nanowrres@C@MnOx nanosheet core-shell heterostructure pseudocapacitance electrode based on reversible phase transition mechanism. Small 2019, 15, 1900862.

    Article  Google Scholar 

  37. Peng, X.; Guo, Y. Q.; Yin, Q.; Wu, J. C.; Zhao, J. Y.; Wang, C. M.; Tao, S.; Chu, W. S.; Wu, C. Z.; Xie, Y. Double-exchange effect in two-dimensional MnO2 nanomaterials. J. Am. Chem. Soc. 2017, 139, 5242–5248.

    Article  CAS  Google Scholar 

  38. Xie, K.; Qin, X. T.; Wang, X. Z.; Wang, Y. N.; Tao, H. S.; Wu, Q.; Yang, L. J.; Hu, Z. Carbon nanocages as supercapacitor electrode materials. Adv. Mater. 2012, 24, 347–352.

    Article  CAS  Google Scholar 

  39. Lyu, Z.; Xu, D.; Yang, L. J.; Che, R. C.; Feng, R.; Zhao, J.; Li, Y.; Wu, Q.; Wang, X. Z.; Hu, Z. Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium-sulfur batteries. Nano Energy 2015, 12, 657–665.

    Article  CAS  Google Scholar 

  40. Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 2015, 5, 6707–6712.

    Article  CAS  Google Scholar 

  41. Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

    Article  Google Scholar 

  42. Website. https://xpssimplified.com/elements/manganese.php.

  43. Sodtipinta, J.; Pon-On, W.; Veerasai, W.; Smith, S. M.; Pakawatpanurut, P. Chelating agent- and surfactant-assisted synthesis of manganese oxide/carbon nanotube composite for electrochemical capacitors. Mater. Res. Bull. 2013, 48, 1204–1212.

    Article  CAS  Google Scholar 

  44. Yang, S. X.; He, P.; Zhou, H. S. Research progresses on materials and electrode design towards key challenges of Li-air batteries. Energy Storage Mater. 2018, 13, 29–48.

    Article  Google Scholar 

  45. Shang, C. Q.; Dong, S. M.; Hu, P.; Guan, J.; Xiao, D. D.; Chen, X.; Zhang, L. X.; Gu, L.; Cui, G. L.; Chen, L. Q. Compatible interface design of CoO-based Li-O2 battery cathodes with long-cycling stability. Sci. Rep. 2015, 5, 8335.

    Article  CAS  Google Scholar 

  46. Zhang, P.; Wang, R. T.; He, M.; Lang, J. W.; Xu, S.; Yan, X. B. 3D hierarchical Co/CoO-graphene-carbonized melamine foam as a superior cathode toward long-life lithium oxygen batteries. Adv. Funct. Mater. 2016, 26, 1354–1364.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was jointly financed by the National Key Research and Development Program of China (Nos. 2018YFA0209100 and 2017YFA0206500), the National Natural Science Foundation of China (NSFC) (Nos. 21832003, 21972061, and 21773111) and the Fundamental Research Funds for the Central Universities (No. 020514380237).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Wu, Xizhang Wang or Zheng Hu.

Additional information

Notes

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

12274_2022_4079_MOESM1_ESM.pdf

Defect-induced deposition of manganese oxides on hierarchical carbon nanocages for high-performance lithium-oxygen batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Liu, C., Yang, L. et al. Defect-induced deposition of manganese oxides on hierarchical carbon nanocages for high-performance lithium-oxygen batteries. Nano Res. 15, 4132–4136 (2022). https://doi.org/10.1007/s12274-022-4079-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4079-y

Keywords

Navigation