Skip to main content
Log in

Large-scale and template-free synthesis of hierarchically porous MnCo2O4.5 as anode material for lithium-ion batteries with enhanced electrochemical performance

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report a simple and large-scale synthetic method of hierarchically porous manganese cobalt oxides without using any template that exhibit enhanced electrochemical performance compared with the nanoparticles counterpart. The hierarchically porous structures consist of close-packed large grains within wormlike hierarchical pores resulting from the piling of the nanoparticles wall. The calcination container conditions are of key importance to affect the morphology and structure of the manganese cobalt oxides. In order to check the fundamental significance of hierarchically porous structure, pristine manganese cobalt oxides without coating any conducting agent are tested as the lithium-ion battery anodes. The cycling stability and rate performance of the hierarchically porous electrode are much better than that of the nanoparticles counterpart with specific capacity as high as 413 mAh g−1 after 100 cycles at a current density of 300 mA g−1. For the purpose of explaining the improved electrochemical performance of the hierarchically porous materials, both electrodes were analyzed with cyclic voltammetry, electrochemical impedance spectroscopy, and transmission electron microscopy measurement. We found that the close-packed morphology and the hierarchically porous structure are responsible for the volume change accommodation and electron-contact maintenance leading to the high specific capacity, cycling stability, and rate performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Rosa MP (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38:2565–2575

    Article  Google Scholar 

  2. Cheng FY, Liang J, Tao ZL, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23:1695–1715

    Article  Google Scholar 

  3. Goodenough JB, Kim YS (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  Google Scholar 

  4. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946

    Article  Google Scholar 

  5. Li H, Wang ZX, Chen LQ, Huang XJ (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593–4607

    Article  Google Scholar 

  6. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262

    Article  Google Scholar 

  7. Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691–714

    Article  Google Scholar 

  8. Tanaka T, Ito S, Muramatsu M, Yamada T, Kamiko H, Kakimoto N, Inui Y (2015) Accurate and versatile simulation of transient voltage profile of lithium-ion secondary battery employing internal equivalent electric circuit. Appl Energy 143:200–210

    Article  Google Scholar 

  9. Sun Y, Hu X, Luo W, Xia F, Huang Y (2013) Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv Funct Mater 23:2436–2444

    Article  Google Scholar 

  10. Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS, Song WG, Wan LJ (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater 20:1160–1165

    Article  Google Scholar 

  11. Wang H, Cui L-F, Yang Y, Casalongue HS, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980

    Article  Google Scholar 

  12. Wu HB, Chen JS, Hng HH, Lou XW (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4:2526–2542

    Article  Google Scholar 

  13. Reddy MV, Rao GVS, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457

    Article  Google Scholar 

  14. Fan Y, Shao H, Wang J, Liu L, Zhang J, Cao C (2011) Synthesis of foam-like freestanding Co3O4 nanosheets with enhanced electrochemical activities. Chem Commun 47:3469–3471

    Article  Google Scholar 

  15. Ren W, Wang C, Lu L, Li D, Cheng C, Liu J (2013) SnO2@Si core-shell nanowire arrays on carbon cloth as a flexible anode for Li ion batteries. J Mater Chem A 1:13433–13438

    Article  Google Scholar 

  16. Qiu Y, Xu G-L, Yan K, Sun H, Xiao J, Yang S, Sun S-G, Jin L, Deng H (2011) Morphology-conserved transformation: synthesis of hierarchical mesoporous nanostructures of Mn2O3 and the nanostructural effects on Li-ion insertion/deinsertion properties. J Mater Chem 21:6346–6353

    Article  Google Scholar 

  17. Reddy MV, Yu T, Sow C-H, Shen ZX, Lim CT, Rao GVS, Chowdari BVR (2007) alpha-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv Funct Mater 17:2792–2799

    Article  Google Scholar 

  18. Li J, Xiong S, Li X, Qian Y (2013) A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 5:2045–2054

    Article  Google Scholar 

  19. Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699

    Article  Google Scholar 

  20. Wang Y, Cao G (2008) Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv Mater 20:2251–2269

    Article  Google Scholar 

  21. Liu B, Soares P, Checkles C, Zhao Y, Yu G (2013) Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Lett 13:3414–3419

    Article  Google Scholar 

  22. Yin S, Zhang Y, Kong J, Zou C, Li CM, Lu X, Ma J, Boey FYC, Chen X (2011) Assembly of graphene sheets into hierarchical structures for high-performance energy storage. ACS Nano 5:3831–3838

    Article  Google Scholar 

  23. Luo Y, Luo J, Jiang J, Zhou W, Yang H, Qi X, Zhang H, Fan HJ, Yu DYW, Li CM, Yu T (2012) Seed-assisted synthesis of highly ordered TiO2@alpha-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ Sci 5:6559–6566

    Article  Google Scholar 

  24. Hou X, Wang X, Liu B, Wang Q, Luo T, Chen D, Shen G (2014) Hierarchical MnCo2O4 nanosheet arrays/carbon cloths as integrated anodes for lithium-ion batteries with improved performance. Nanoscale 6:8858–8864

    Article  Google Scholar 

  25. Zhou L, Zhao D, Lou XW (2012) Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv Mater 24:745–748

    Article  Google Scholar 

  26. Zhu GN, Wang YG, Xia YY (2012) Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 5:6652–6667

    Article  Google Scholar 

  27. Yu L, Zhang L, Wu HB, Zhang G, Lou XW (2013) Controlled synthesis of hierarchical CoxMn3-xO4 array micro-/nanostructures with tunable morphology and composition as integrated electrodes for lithium-ion batteries. Energy Environ Sci 6:2664–2671

    Article  Google Scholar 

  28. Mondal AK, Su D, Chen S, Ung A, Kim HS, Wang G (2015) Mesoporous MnCo2O4 with a flake-like structure as advanced electrode materials for lithium-ion batteries and supercapacitors. Chem Eur J 21:1526–1532

    Article  Google Scholar 

  29. Xia Y, Zhang WK, Xiao Z, Huang H, Zeng HJ, Chen XR, Chen F, Gan YP, Tao XY (2012) Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries. J Mater Chem 22:9209–9215

    Article  Google Scholar 

  30. Zhang JJ, Sun YF, Yao Y, Huang T, Yu AS (2013) Lysine-assisted hydrothermal synthesis of hierarchically porous Fe2O3 microspheres as anode materials for lithium-ion batteries. J Power Sources 222:59–65

    Article  Google Scholar 

  31. Li Y, Zhu S, Liu Q, Gu J, Guo Z, Chen Z, Feng C, Zhang D, Moon WJ (2012) Carbon-coated SnO2@C with hierarchically porous structures and graphite layers inside for a high-performance lithium-ion battery. J Mater Chem 22:2766–2773

    Article  Google Scholar 

  32. Hu L, Zhong H, Zheng X, Huang Y, Zhang P, Chen Q (2012) CoMn2O4 Spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci Rep 2:986

    Google Scholar 

  33. Sharma Y, Sharma N, Rao GVS, Chowdari BVR (2008) Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochim Acta 53:2380–2385

    Article  Google Scholar 

  34. Sharma Y, Sharma N, Rao GVS, Chowdari BVR (2007) Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries. J Power Sources 173:495–501

    Article  Google Scholar 

  35. Kim SW, Lee HW, Muralidharan P, Seo DH, Yoon WS, Kim DK, Kang K (2011) Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Res 4:505–510

    Article  Google Scholar 

  36. Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011

    Article  Google Scholar 

  37. Li G, Xu L, Zhai Y, Hou Y (2015) Fabrication of hierarchical porous MnCo2O4 and CoMn2O4 microspheres composed of polyhedral nanoparticles as promising anodes for long-life LIBs. J Mater Chem A 3:14298–14306

    Article  Google Scholar 

  38. Niu FE, Wang NN, Yue J, Liang C, Yang J, Qian YT (2016) Hierarchically porous CuCo2O4 microflowers: a superior anode material for Li-ion batteries and a stable cathode electrocatalyst for Li-O2 Batteries. Electrochim Acta 208:148–155

    Article  Google Scholar 

  39. Zhao D, Qin JW, Zheng LR, Cao MH (2016) Amorphous vanadium oxide/molybdenum oxide hybrid with three dimensional ordered hierarchically porous structure as a high performance Li-Ion battery anode. Chem Mater 28:4180–4190

    Article  Google Scholar 

  40. Wu ZS, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng HM (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194

    Article  Google Scholar 

  41. Wang L, Liu B, Ran S, Huang H, Wang X, Liang B, Chen D, Shen G (2012) Nanorod-assembled Co3O4 hexapods with enhanced electrochemical performance for lithium-ion batteries. J Mater Chem 22:23541–23546

    Article  Google Scholar 

  42. Chang L, Mai L, Xu X, An Q, Zhao Y, Wang D, Feng X (2013) Pore-controlled synthesis of Mn2O3 microspheres for ultralong-life lithium storage electrode. Rsc Adv 3:1947–1952

    Article  Google Scholar 

  43. Fu C, Li G, Luo D, Huang X, Zheng J, Li L (2014) One-step calcination-free synthesis of multicomponent spinel assembled microspheres for high-performance anodes of Li-ion batteries: a case study of MnCo2O4. ACS Appl Mater Interfaces 6:2439–2449

    Article  Google Scholar 

  44. Li J, Wang J, Liang X, Zhang Z, Liu H, Qian Y, Xiong S (2014) Hollow MnCo2O4 submicrospheres with multilevel interiors: from mesoporous spheres to yolk-in-double-shell structures. ACS Appl Mater Interfaces 6:24–30

    Article  Google Scholar 

  45. Li W, Xu K, Song G, Zhou X, Zou R, Yang J, Chen Z, Hu J (2014) Facile synthesis of porous MnCo2O4.5 hierarchical architectures for high- rate supercapacitors. CrystEngComm 16:2335–2339

    Article  Google Scholar 

  46. Hao P, Zhao Z, Li L, Tuan C-C, Li H, Sang Y, Jiang H, Wong CP, Liu H (2015) The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density. Nanoscale 7:14401–14412

    Article  Google Scholar 

  47. Li G, Li L, Shi J, Yuan Y, Li Y, Zhao W, Shi J (2014) One-pot pyrolytic synthesis of mesoporous MCo2O44.5 (M = Mn, Ni, Fe, Cu) spinels and its high efficient catalytic properties for CO oxidation at low temperature. J Mol Catal A-Chem 390:97–104

    Article  Google Scholar 

  48. Li J, Zhou N, Wang H, Li H, Xie Z, Chu H, Tang Y, Sun L, Peng Z (2015) Three-dimensional MnCo2O4.5 mesoporous networks as an electrocatalyst for oxygen reduction reaction. J Electrochem Soc 162:A2302–A2307

    Article  Google Scholar 

  49. Yang W, Hao J, Zhang Z, Lu B, Zhang B, Tang J (2014) Synthesis of hierarchical MnCo2O4.5 nanostructure modified MnOOH nanorods for catalytic degradation of methylene blue. Catal Commun 16:174–178

    Article  Google Scholar 

  50. Sun X, Shi Y, Zhang P, Zheng C, Zheng X, Zhang F, Zhang Y, Guan N, Zhao D, Stucky GD (2011) Container effect in nanocasting synthesis of mesoporous metal oxides. J Am Chem Soc 133:14542–14545

    Article  Google Scholar 

  51. Sun X, Hu X, Wang Y, Xiong R, Li X, Liu J, Ji H, Li X, Cai S, Zheng C (2015) Enhanced gas-sensing performance of Fe-doped ordered mesoporous NiO with long-range periodicity. J Phys Chem C 119:3228–3237

    Article  Google Scholar 

  52. Sun X, Hao H, Ji H, Li X, Cai S, Zheng C (2014) Nanocasting Synthesis of In2O3 with appropriate mesostructured ordering and enhanced gas-sensing property. ACS Appl Mater Interfaces 6:401–409

    Article  Google Scholar 

  53. Wang YJ, Kuang PY, Li N, Liu ZQ, Su YZ, Chen S (2015) Facile hydrothermal synthesis of cobalt manganese oxides spindles and their magnetic properties. Ceram Int 41:8670–8679

    Article  Google Scholar 

  54. Hou X, Liu B, Wang X, Wang Z, Wang Q, Chen D, Shen G (2013) SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems. Nanoscale 5:7831–7837

    Article  Google Scholar 

  55. Courtel FM, Duncan H, Abu LY, Davidson IJ (2011) High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn(2)O(4) (A = Co, Ni, and Zn). J Mater Chem 21:10206–10218

    Article  Google Scholar 

  56. Zhai Y, Mao H, Liu Ren PX, Xu L, Qian Y (2011) Facile fabrication of hierarchical porous rose-like NiCo2O4 nanoflake/MnCo2O4 nanoparticle composites with enhanced electrochemical performance for energy storage. J Mater Chem A 3:16142–16149

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Natural Science Foundation of China, NSFC (51202159, 51208357, 51472179, 51572192), and General Program of Municipal Natural Science Foundation of Tianjin (13JCYBJC16900, 13JCQNJC08200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Sun or Chunming Zheng.

Additional information

Xudong Hu and Simin Zhang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Zhang, S., Li, X. et al. Large-scale and template-free synthesis of hierarchically porous MnCo2O4.5 as anode material for lithium-ion batteries with enhanced electrochemical performance. J Mater Sci 52, 5268–5282 (2017). https://doi.org/10.1007/s10853-017-0767-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0767-5

Keywords

Navigation