Skip to main content
Log in

Electrochemical oxidation of quercetin in aqueous and ethanol-water media with the use of graphite/chemically modified silica ceramic electrode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A mixture of silica chemically modified with 1-n-propyl-3-methylimidazolium chloride and graphite was used to fabricate a ceramic working electrode. The conventional three-electrode cell that included the prepared electrode has been used to investigate the electrochemical behavior of quercetin in aqueous and ethanol-water media by methods of cyclic voltammetry and chronoamperometry. The procedures for the quercetin determination in aqueous and ethanol-water media have been developed. The limits of detection are 0.05 μmol L−1 in aqueous medium and 3–6 μmol L−1 in ethanol solution and ethanol-water mixtures. The applicability of the electrode and the developed procedure has been verified by the analysis of real pharmaceutical. Therefore, the proposed procedures can be implemented in the drug quality control. The mechanisms of the quercetin oxidation depend on the medium. Oxidation at ~ 150 mV occurs according to the well-known mechanism that involves the removal of two electrons and two hydrogen ions from the quercetin molecule. The oxidation of quercetin in ethanol-water media takes place also at ~ 550 mV. The plausible mechanism of this process derived from the electrochemical data and confirmed by the quantum-chemical calculations includes firstly formation of the 7,4′-biradical structure which then transforms into the 7,4′-dione compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boots AW, Haenen GRMM, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337. https://doi.org/10.1016/j.ejphar.2008.03.008

    Article  CAS  PubMed  Google Scholar 

  2. Liu Y, Tang ZG, Lin Y, Qu XG, Lv W, Wang GB, Li CL (2017) Effects of quercetin on proliferation and migration of human glioblastoma U251 cells. Biomed Pharmacother 98:33–38. https://doi.org/10.1016/j.biopha.2017.05.044

    Article  CAS  Google Scholar 

  3. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: An overview. Sci World J 2013:162750. https://doi.org/10.1155/2013/162750

  4. Kuntic V, Pejic N, Micic S, Vukojevic V, Vujic Z, Malesev D (2005) Determination of quercetin in pharmaceutical formations via its reaction with potassium titanyloxalate. Determination of the stability constants of the quercetin titanyloxalato complex. J Serb Chem Soc 70:753–763. https://doi.org/10.2298/JSC0505753K

    Article  Google Scholar 

  5. Sohrabi MR, Darabi G (2015) The application of continuous wavelet transform and least squares support vector machine for the simultaneous quantitative spectrophotometric determination of myricetin, kaempferol and quercetin as flavonoids in pharmaceutical plants. Spectrochim Acta A Mol Biomol Spectrosc 152:443–452. https://doi.org/10.1016/j.saa.2015.07.073

    Article  CAS  PubMed  Google Scholar 

  6. Wu H, Chen M, Fan Y, Elsebaei F, Zhu Y (2012) Determination of rutin and quercetin in Chinese herbal medicine by ionic liquid-based pressurized liquid extraction-liquid chromatography-chemiluminescence detection. Talanta 88:222–229. https://doi.org/10.1016/j.talanta.2011.10.036

    Article  CAS  PubMed  Google Scholar 

  7. Lin XQ, He JB, Zha ZG (2006) Simultaneous determination of quercetin and rutin at a multi-wall carbon-nanotube paste electrodes by reversing differential pulse voltammetry. Sens Actuator B Chem 119:608–614. https://doi.org/10.1016/j.snb.2006.01.016

    Article  CAS  Google Scholar 

  8. Kan X, Zhou H, Li C, Zhu A, Xing Z, Zhao Z (2012) Imprinted electrochemical sensor for dopamine recognition and determination based on a carbon nanotube/polypyrrole film. Electrochim Acta 63:69–75. https://doi.org/10.1016/j.electacta.2011.12.086

    Article  CAS  Google Scholar 

  9. He JB, Lin XQ, Pan (2005) Multi-wall carbon nanotube paste electrode for adsorptive stripping determination of quercetin: a comparison with graphite paste electrode via voltammetry and chronopotentiometry. Electroanalysis 17:1681–1686. https://doi.org/10.1002/elan.200503274

    Article  CAS  Google Scholar 

  10. Manokaran J, Muruganantham R, Muthukrishnaraj A, Balasubramanian N (2015) Platinum-polydopamine @SiO2 nanocomposite modified electrode for the electrochemical determination of quercetin. Electrochim Acta 168:16–24. https://doi.org/10.1016/j.electacta.2015.04.016

    Article  CAS  Google Scholar 

  11. Wang MY, Zhang DE, Tong ZW, Xu XY, Yang XJ (2011) Voltammetric behavior and the determination of quercetin at a flowerlike Co3O4 nanoparticles modified glassy carbon electrode. J Appl Electrochem 41:189–196. https://doi.org/10.1007/s10800-010-0223-6

    Article  CAS  Google Scholar 

  12. Pereira ERCV, Bessegato GG, Yamanaka H, Zanoni MVB (2016) Determination of quercetin by a siloxane-polyester/poly-L-lysine nanocomposite modified glassy carbon electrode. Anal Lett 49:1398–1411. https://doi.org/10.1080/00032719.2015.1104323

    Article  CAS  Google Scholar 

  13. Yola ML, Gupta VK, Eren T, Sen AE, Atar N (2014) A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim Acta 120:204–211. https://doi.org/10.1016/j.electacta.2013.12.086

    Article  CAS  Google Scholar 

  14. Walcarius A (2001) Electroanalysis with pure, chemically modified, and sol-gel-derived silica-based materials. Electroanalysis 13:701–718. https://doi.org/10.1002/1521-4109(200105)13:8/9<701::AID-ELAN701>3.0.CO;2-6

    Article  CAS  Google Scholar 

  15. Ramos JVH, Morawski FM, Costa TMH, Dias SLP, Benvenutti EV, Menezes EW, Arenas LT (2015) Mesoporous chitosan/silica hybrid material applied for development of electrochemical sensor for paracetamol in presence of dopamine. Microporous Mesoporous Mater 217:109–118. https://doi.org/10.1016/j.micromeso.2015.06.010

    Article  CAS  Google Scholar 

  16. Salama NN, Zaazaa HE, Azab SM, Atty SA, El-Kosy NM, Salem MY (2016) Utility of gold nanoparticles/silica modified electrode for rapid selective determination of mebeverine in micellar medium: comparative discussion and application in human serum. Ionics 22:957–966. https://doi.org/10.1007/s11581-015-1602-0

    Article  CAS  Google Scholar 

  17. Noroozifar M, Khorasani-Motlagh M, Parizi MB, Akbari R (2013) Highly sensitive electrochemical detection of dopamine and uric acid on a novel carbon nanotube-modified ionic liquid-nanozeolite paste electrode. Ionics 19:1317–1327. https://doi.org/10.1007/s11581-013-0852-y

    Article  CAS  Google Scholar 

  18. Opallo M, Lesniewski A (2011) A review on electrodes modified with ionic liquids. J Electroanal Chem 656:2–16. https://doi.org/10.1016/j.jelechem.2011.01.008

    Article  CAS  Google Scholar 

  19. Maroneze CM, Rahim A, Fattori N, Costa LP, Sigoli FA, Mazali IO, Custodio R, Gushikem Y (2014) Electroactive properties of 1-propyl-3-methylimidazolium ionic liquid covalently bonded on mesoporous silica surface: development of an electrochemical sensor probed for NADH, dopamine and uric acid detection. Electrochim Acta 123:435–440. https://doi.org/10.1016/j.electacta.2014.01.071

    Article  CAS  Google Scholar 

  20. Brett AMO, Ghica ME (2003) Electrochemical oxidation of quercetin. Electroanalysis 15:1745–1750. https://doi.org/10.1002/elan.200302800

    Article  CAS  Google Scholar 

  21. Timbola AK, Souza CD, Giacomelli C, Spinelli A (2006) Electrochemical oxidation of quercetin in hydro-alcoholic solution. J Braz Chem Soc 17:139–148. https://doi.org/10.1590/S0103-50532006000100020

    Article  CAS  Google Scholar 

  22. Sokolova R, Ramesova S, Degano I, Hromadova M, Gal M, Zabka J (2012) The oxidation of natural flavonoid quercetin. Chem Commun 48:3433–3435. https://doi.org/10.1039/C7CC01470H

    Article  CAS  Google Scholar 

  23. Kummer S, Ruth W, Kuhn O, Kragl U (2014) Comparison of electrochemical oxidation of flavonols and calculated proton affinity and electron transfer enthalpy in water. Electroanalysis 26:910–918. https://doi.org/10.1002/elan.201300631

    Article  CAS  Google Scholar 

  24. Sokolova R, Degano I, Ramesova S, Bulickova J, Hromadova M, Gala M, Fiedler J, Valasek M (2011) The oxidation mechanism of the antioxidant quercetin in nonaqueous media. Electrochim Acta 56:7421–7427. https://doi.org/10.1016/j.electacta.2011.04.121

    Article  CAS  Google Scholar 

  25. Bancirova M (2015) Changes of the quercetin absorption spectra in dependence on solvent. Chem J 1:31–34

    CAS  Google Scholar 

  26. Interstate Standard 8.134-98 (1998) State system for ensuring the uniformity of measurements, pH Scale for aqueous solutions. Standartinform. http://protect.gost.ru/document.aspx?control=7&id=132520. Accessed 13 March 2014

  27. Palmer WG (1970) Experimental inorganic chemistry. Cambridge Univ Press, New York

    Google Scholar 

  28. Panteleimonov А, Tkachenko O, Baraban A, Benvenutti EV, Gushikem Y, Kholin Y (2014) Probing silica-organic hybrid materials using small probes: simulation of adsorption equilibria influenced by cooperativity effects. Adsorp Sci Technol 32:305–320. https://doi.org/10.1260/0263-6174.32.4.305

    Article  CAS  Google Scholar 

  29. Kuntic V, Pejic N, Micic S, Vukojevic V, Vujic Z, Malesev D (2005) Determination of quercetin in pharmaceutical formations via its reaction with potassium titanyloxalate. Determination of the stability constants of the quercetin titanyloxalato complex. Serb Chem Soc 70:753–763

    Article  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE et al (2009) Gaussian 09, revision D.01. Gaussian, Inc, Wallingford

    Google Scholar 

  31. Currie LA (1995) Nomenclature in evaluation of analytical methods including detection and quantification capabilities. Pure Appl Chem 67:1699–1723. https://doi.org/10.1351/pac199567101699

    Article  CAS  Google Scholar 

  32. Zhang Z, Gu S, Ding Y, Shen M, Jiang L (2014) Biosensors and bioelectronics mild and novel electrochemical preparation of β-cyclodextrin/graphene nanocomposite film for super-sensitive sensing of quercetin. Biosens Bioelectron 57:239–244. https://doi.org/10.1016/j.bios.2014.02.014

    Article  CAS  PubMed  Google Scholar 

  33. Chen X, Li Q, Yu S, Lin B, Wu K (2012) Activated silica gel based carbon paste electrodes exhibit signal enhancement for quercetin. Electrochim Acta 81:106–111. https://doi.org/10.1016/j.electacta.2012.07.063

    Article  CAS  Google Scholar 

  34. Zhou A, Kikandi S, Sadik OA (2007) Electrochemical degradation of quercetin: isolation and structural elucidation of the degradation products. Electrochem Commun 9:2246–2255. https://doi.org/10.1016/j.elecom.2007.06.026

    Article  CAS  Google Scholar 

  35. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications. Wiley, New York

    Google Scholar 

  36. Tkachenko O, Rahim A, Baraban A, Sukhov R, Khristenko I, Gushikem Y, Kholin Y (2013) Hybrid silica-organic material with immobilized amino groups: surface probing and use for electrochemical determination of nitrite ions. J Sol-Gel Sci Technol 67:145–154. https://doi.org/10.1007/s10971-013-3060-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their deep gratitude to Professor Yoshitaka Gushikem (State University of Campinas, Brazil) for his help and useful advices. All authors are sincerely thankful to Professor A. Korobov for manuscript revision.

Funding

The research was partly supported by the Ministry of Education and Science of Ukraine (grants 0115U00484, 0116U000834).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg S. Tkachenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onizhuk, M.O., Tkachenko, O.S., Panteleimonov, A.V. et al. Electrochemical oxidation of quercetin in aqueous and ethanol-water media with the use of graphite/chemically modified silica ceramic electrode. Ionics 24, 1755–1764 (2018). https://doi.org/10.1007/s11581-017-2320-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2320-6

Keywords

Navigation