Skip to main content
Log in

Voltammetric Determination of Quercetin and Rutin on Their Simultaneous Presence on an Electrode Modified with Polythymolphthalein

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A voltammetric method is developed for the determination of quercetin and rutin in the simultaneous presence on a glassy carbon electrode modified with carbon nanofibers and polythymolphthalein. The conditions of the potentiodynamic electrolysis of thymolphthalein providing the maximum difference in the oxidation potentials of quercetin and rutin equal to 136 mV are found. Thymolphthalein electropolymerization should be carried out in a 100 μM solution by the 10-fold cycling of the potential from 0 to 1.7 V at a sweep rate of 75 mV/s in phosphate buffer solution with pH 7.0. The electrode modified with polythymolphthalein is characterized by scanning electron microscopy, cyclic voltammetry, and electrochemical impedance. It is found that the oxidation of quercetin proceeds irreversibly, and that of rutin, quasi-reversibly with the participation of two electrons and two protons and is controlled by the adsorption of analytes on the electrode surface. The analytical range is 0.025–1.00 μM for both analytes, and the limits of detection are 7.3 nM for quercetin and 4.7 nM for rutin. The selectivity of the electrode response to quercetin and rutin in the presence of inorganic ions, saccharides, and ascorbic and p-coumaric acids is shown. The developed method is tested on real samples (linden Tilia L. flowers and onions).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Budnikov, H.C., Evtyugin, G.A., and Maistrenko, V.N., Modifitsirovannye elektrody dlya vol’tamperometrii v khimii, biologii i meditsine (Modified Electrodes for Voltammetry in Chemistry, Biology, and Medicine), Moscow: Binom. Laboratoriya znanii, 2010.

  2. Ziyatdinova, G.K., Kozlova, E.V., Ziganshina, E.R., and Budnikov, H.C., Butlerovskie Soobshch., 2015, vol. 42, no. 6, p. 132.

    Google Scholar 

  3. Figueiredo-Filho, L.C., Silva, T.A., Vicentini, F.C., and Fatibello-Filho, O., Analyst, 2014, vol. 139, no. 11, p. 2842.

    Article  CAS  Google Scholar 

  4. Ziyatdinova, G.K. and Budnikov, H.C., Russ. Chem. Rev., 2015, vol. 84, no. 2, p. 194.

    Article  CAS  Google Scholar 

  5. de Castro Viana Pereira, E.R., Garcia Bessegato, G., Yamanaka, H., and Boldrin Zanoni, M.V., Anal. Lett., 2016, vol. 49, no. 9, p. 1398.

    Article  Google Scholar 

  6. Ziyatdinova, G., Kozlova, E., and Budnikov, H., J. Electroanal. Chem., 2018, vol. 821, p. 73.

    Article  CAS  Google Scholar 

  7. Franzoi, A.C., Spinelli, A., and Vieira, L.C., J. Pharm. Biomed. Anal., 2008, vol. 47, nos. 4–5, p. 973.

    Article  CAS  Google Scholar 

  8. Chen, X., Wang, Z., Zhang, F., Zhu, L., Li, Y., and Xia, Y., Chem. Pharm. Bull., 2010, vol. 58, no. 4, p. 475.

    Article  CAS  Google Scholar 

  9. Selvi, B., Sadikoglu, M., Soylu, U.I., Yilmaz, S., Onal, A., and Eser, F., Anal. Bioanal. Electrochem., 2017, vol. 9, no. 5, p. 574.

    CAS  Google Scholar 

  10. Sun, W., Wang, Y., Gong, S., Cheng, Y., Shi, F., and Sun, Z., Electrochim. Acta, 2013, vol. 109, p. 298.

    Article  CAS  Google Scholar 

  11. Sun, S., Zhang, M., Li, Y., and He, X., Sensors, 2013, vol. 13, no. 5, p. 5493.

    Article  CAS  Google Scholar 

  12. Lu, B., Xia, J., Wang, Z., Zhang, F., Yang, M., Li, Y., and Xia, Y., RSC Adv., 2015, vol. 5, no. 101, 82930.

    Article  CAS  Google Scholar 

  13. Salmi, Z., Benmehdi, H., Lamouri, A., Decorse, P., Jouini, M., Yagci, Y., and Chehimi, M.M., Microchim. Acta, 2013, vol. 180, nos. 15–16, p. 1411.

    Article  CAS  Google Scholar 

  14. Arvand, M. and Anvari, M., Can. J. Chem., 2014, vol. 92, no. 11, p. 1074.

    Article  CAS  Google Scholar 

  15. Wang, M., Zhang, D., Tong, Z., Xu, X., and Yang, X., J. Appl. Electrochem., 2011, vol. 41, no. 2, p. 189.

    Article  Google Scholar 

  16. Li, Y. and Huang, W., Anal. Methods, 2015, vol. 7, no. 6, p. 2537.

    Article  CAS  Google Scholar 

  17. Gupta, V.K., Golestani, F., Ahmadzadeh, S., Karimi-Maleh, H., Fazli, G., and Khosravi, S., Int. J. Electrochem. Sci., 2015, vol. 10, no. 4, p. 3657.

    CAS  Google Scholar 

  18. Erady, V., Mascarenhas, R.J., Satpati, A.K., Detriche, S., Mekhalif, Z., Delhalle, J., and Dhason, A., Mater. Sci. Eng., C, 2017, vol. 76, p. 114.

    Article  CAS  Google Scholar 

  19. Manokaran, J., Muruganantham, R., Muthukrishnaraj, A., and Balasubramanian, N., Electrochim. Acta, 2015, vol. 168, p. 16.

    Article  CAS  Google Scholar 

  20. Gutiérrez, F., Ortega, G., Cabrera, J.L., Rubianes, M.D., and Rivas, G.A., Electroanalysis, 2010, vol. 22, no. 22, p. 2650.

    Article  Google Scholar 

  21. Gao, F., Qi, X., Cai, X., Wang, Q., Gao, F., and Sun, W., Thin Solid Films, 2012, vol. 520, no. 15, p. 5064.

    Article  CAS  Google Scholar 

  22. Niu, X., Wen, Z., Li, X., Zhao, W., Li, X., Huang, Y., Li, Q., Li, G., and Sun, W., Sens. Actuators, B, 2018, vol. 255, no. 1, p. 471.

    Article  CAS  Google Scholar 

  23. Wang, X., Cheng, C., Dong, R., and Hao, J., J. Solid State Electrochem., 2012, vol. 16, no. 8, p. 2815.

    Article  CAS  Google Scholar 

  24. Zhu, Z., Sun, X., Zhuang, X., Zeng, Y., Sun, W., and Huang, X., Thin Solid Films, 2010, vol. 519, no. 2, p. 928.

    Article  CAS  Google Scholar 

  25. Yang, S., Qu, L., Li, G., Yang, R., and Liu, C., J. Electroanal. Chem., 2010, vol. 645, no. 2, p. 115.

    Article  CAS  Google Scholar 

  26. Cui, S., Li, L., Ding, Y., Zhang, J., Yang, H., and Wang, Y., Talanta, 2017, vol. 164, p. 291.

    Article  CAS  Google Scholar 

  27. Sun, W., Wang, Y., Gong, S., Cheng, Y., Shi, F., and Sun, Z., Electrochim. Acta, 2013, vol. 109, p. 298.

    Article  CAS  Google Scholar 

  28. Niu, X., Weng, W., Yin, C., Niu, Y., Li, G., Dong, R., Men, Y., and Sun, W., J. Electroanal. Chem., 2018, vol. 811, p. 78.

    Article  CAS  Google Scholar 

  29. Yola, M.L. and Atar, N., Electrochim. Acta, 2014, vol. 118, p. 24.

    Article  Google Scholar 

  30. Lin, X.-Q., He, J.-B., and Zha, Z.-G., Sens. Actuators, B, 2006, vol. 119, no. 2, p. 608.

    Article  CAS  Google Scholar 

  31. Elcin, S., Yola, M.L., Eren, T., Girgin, B., and Atar, N., Electroanalysis, 2016, vol. 28, no. 3, p. 611.

    Article  CAS  Google Scholar 

  32. Japanese Pharmacopoeia XVI, Tokyo: Pharm. Med. Device Regulatory Sci. Soc. Jpn., 2011.

  33. Murphy, M.A., Wilcox, G.D., Dahm, R.H., and Marken, F., Electrochem. Commun., 2003, vol. 5, no. 1, p. 51.

    Article  CAS  Google Scholar 

  34. Chandrashekar, B.N., Swamy, B.E.K., Mahesh, K.R.V., Chandra, U., and Sherigara, B.S., Int. J. Electrochem. Sci., 2009, vol. 4, no. 3, p. 471.

    CAS  Google Scholar 

  35. Schab-Balcerzak, E., InTech, 2011, p. 214.

  36. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001, 2nd ed.

    Google Scholar 

  37. Ziyatdinova, G., Aytuganova, I., Nizamova, A., Morozov, M., and Budnikov, H., Collect. Czech. Chem. Commun., 2011, vol. 76, no. 12, p. 1619.

    Article  CAS  Google Scholar 

  38. Wang, M.Y., Zhang, D., Tong, Z., Xu, X., and Yang, X., J. Appl. Electrochem., 2011, vol. 41, no. 2, p. 189.

    Article  Google Scholar 

  39. Kurzawa, M., Anal. Lett., 2010, vol. 43, no. 6, p. 993.

    Article  CAS  Google Scholar 

  40. Augšpole, I., Dūma, M., and Ozola, B., Agron. Res., 2018, vol. 16, no. S2, p. 1322.

    Google Scholar 

  41. Lu, T.-M., Chiu, H.-F., Shen, Y.-C., Chung, C.-C., Venkatakrishnan, K., and Wang, C.-K., Plant Foods Hum. Nutr., 2015, vol. 70, no. 4, p. 395.

    Article  CAS  Google Scholar 

  42. Gomez, F.J.V., Espino, M., de los Angeles Fernandez, M., Raba, J., and Silva, M.F., Anal. Chim. Acta, 2016, vol. 936, p. 91.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-33-00220-mol_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Ziyatdinova.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guss, E.V., Ziyatdinova, G.K., Zhupanova, A.S. et al. Voltammetric Determination of Quercetin and Rutin on Their Simultaneous Presence on an Electrode Modified with Polythymolphthalein. J Anal Chem 75, 526–535 (2020). https://doi.org/10.1134/S106193482004005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106193482004005X

Keywords:

Navigation