Skip to main content

Advertisement

Log in

A novel electro-chlorinator using low cost graphite electrode for drinking water disinfection

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A unique electro-chlorination reactor was designed with six numbers each of cylindrical shaped graphite anodes and stainless steel cathodes. A series of experiments were run in the laboratory scale applying lower current densities. Maximum active chlorine concentration of 0.75 mg/l was obtained at an optimum current density of 1.5 mA/cm2 from an available chloride concentration of 8.5 mg/l found naturally in the tap water. It was observed that with an increase in the current density, there was a marked decrease of chloride conversion from 50 to 42%. The maximum chloride conversion rate of 57.3% was achieved corresponding to an electrolysis time of 30 min. There was no marked change in pH after the electrolysis which may be attributed to the neutralization of hydroxyl ions generated at the cathode with the protons spitted at the anode. A maximum energy consumption of 0.083 kWh/m3 was required for generating a maximum active chlorine concentration of 2 mg/l from chloride concentration of 50 mg/l added externally in the water. After a continuous operation of 3 months, it was found that the graphite electrodes were corroded at the rate of 0.005 mm/h. A strong positive Pearson correlation of 0.988 was obtained among the parameters current density, chloride concentration, time, pH and active chlorine, whereas a negative correlation coefficient of −0.902 was obtained between electrolysis time and formation rate of active chlorine. The present work provides a simple reactor design strategy to use affordable graphite electrodes in the field application of electrochemical point of use of drinking water disinfection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. World Health Organization (2009) Diarrhoea: why children are still dying and what can be done. (Accessed 25.11.15). http://www.who.int/maternal_child_adolescent/documents/9789241598415/en/

  2. World Health Organization (2011) Guidelines for drinking-water quality, fourth ed. (Accessed 12.03.16). http://www.who.int/water_sanitation_health/publications/dwq-guidelines-4/en/

  3. World Health Organization (2014) Progress on drinking water and sanitation. (Accessed 25.11.15). http://www.who.int/water_sanitation_health/publications/jmp-report-2014/en/

  4. Deborde M, Gunten U (2008) Reactions of chlorine with inorganic and organic compounds during water treatment-kinetics and mechanisms: a critical review. Water Res 42:13–51

    Article  CAS  Google Scholar 

  5. Lacasa E, Llanos J, Canizares P, Rodrigo MA (2012) Electrochemical denitrification with chlorides using DSA and BDD anodes. Chem Eng J 184:66–71

    Article  CAS  Google Scholar 

  6. Mascia M, Vacca A, Palmas S (2012) Fixed bed reactors with three dimensional electrodes for electrochemical treatment of waters for disinfection. Chem Eng J 211–212:479–487

    Article  Google Scholar 

  7. Chen KH, Shih YJ, Huang YH (2013) Mineralization of citric acid wastewater by photo-electrochemical chlorine oxidation. J Environ Manag 121:1–5

    Article  CAS  Google Scholar 

  8. Shih YJ, Cheng PY, Ariyanto BO, Huang YH (2013) Electrochemical oxidation of carboxylic acids in the presence of manganese chloride. J Electrochem Soc 160:H681–H686

    Article  CAS  Google Scholar 

  9. White GC (1999) Chemistry of chlorination. Handbook of chlorination and alternative disinfectants:212–287

  10. Cantor KP, Lynch CF, Hildesheim M, Dosemeci M, Lubin J, Alavanja M, Craun G (1998) Drinking water source and chlorination byproducts I. Risk of Bladder Cancer Epidemiology 9(1):21–28

    CAS  Google Scholar 

  11. Kristiana I, Gallard H, Joll C, Croue JP (2009) The formation of halogen-specific TOX from chlorination and chloramination of natural organic matter isolates. Water Res 43(17):4177–4186. doi:10.1016/j.watres.2009.06.044

    Article  CAS  Google Scholar 

  12. Rajeshwar K, Ibanez JG, Swain GM (1994) Electrochemistry and the environment. JApplElectrochem 24(11):1077–1091. doi:10.1007/BF00241305

    CAS  Google Scholar 

  13. Venczel LV, Arrowood M, Hurd M, Sobsey MD (1997) Inactivation of Cryptosporidium parvum oocysts and Clostridium perfringens spores by a mixed-oxidant disinfectant and by free chlorine. Appl EnvironMicrobiol 63(4):1598–1601

    CAS  Google Scholar 

  14. Jeong J, Kim JY, Cho M, Choi W, Yoon J (2007) Inactivation of Escherichia coli in the electrochemical disinfection process using a Pt anode. Chemosphere 67(4):652–659. doi:10.1016/j.chemosphere.2006.11.035

    Article  CAS  Google Scholar 

  15. Martínez-Huitle CA, Brillas E (2008) Electrochemical alternatives for drinking water disinfection. Angew Chem Int Ed 47(11):1998–2005

    Article  Google Scholar 

  16. Ghernaout D, Ghernaout B (2010) From chemical disinfection to electrodisinfection: the obligatory itinerary? Desalin Water Treat 16(1–3):156–175

    Article  CAS  Google Scholar 

  17. Patermaraxis G, Fountoukidis E (1990) Disinfection of water by electrochemical treatment. Water Res 24(12):1491–1496

    Article  Google Scholar 

  18. Butterfield M, Christensen PA, Curtis TP, Gunlazuardi J (1997) Water disinfection using an immobilized titanium dioxide film in a photochemical reactor with electric field enhancement. Water Res 31:675–677. doi:10.1016/S0043-1354(96)00391-0

    Article  CAS  Google Scholar 

  19. Hayfield PCS (1998) Development of the noble metal/oxide coated titanium electrode. Platin Met Rev 42(2):46–55

    CAS  Google Scholar 

  20. Kraft A (2007) Doped diamond: a compact review on a new, versatile electrode material. Int J Electrochem Sci 2(5):355–385

    CAS  Google Scholar 

  21. Patil RS, Juvekar VA, Naik VM (2014) A polarity switching technique for the efficient production of sodium hypochlorite from aqueous sodium chloride using platinum electrodes. Ind Eng Chem Res 53(50):19426–19437. doi:10.1021/ie503084m

    CAS  Google Scholar 

  22. Kuhn AT, Wright PM (1973) The behaviour of platinum, iridium and ruthenium electrodes in strong chloride solutions. J Electroanal Chem Interfacial Electrochem 41(3):329–349. doi:10.1016/S0022-0728(73)80412-7

    Article  CAS  Google Scholar 

  23. Patil RS, Juvekar VA, Naik VM (2011) Oxidation of chloride ion on platinum electrode: dynamics of electrode passivation and its effect on oxidation kinetics. Ind Eng Chem Res 50(23):12946–12959. doi:10.1021/ie200663a

    Article  CAS  Google Scholar 

  24. Hansen HA, Man IC, Studt F, Abild-Pedersen F, Bligaard T, Rossmeisl J (2010) Electrochemical chlorine evolution at rutile oxide (110) surfaces. Phys ChemChem Phys 12(1):283–290. doi:10.1039/B917459A

    Article  CAS  Google Scholar 

  25. Kodera F, Umeda M, Yamada A (2005) Determination of free chlorine based on anodic voltammetry using platinum, gold, and glassy carbon electrodes. AnalChim Acta 537(1):293–298. doi:10.1016/j.aca.2005.01.053

    Article  CAS  Google Scholar 

  26. Murata M, Ivandini TA, Shibata M, Nomura S, Fujishima A, Einaga Y (2008) Electrochemical detection of free chlorine at highly boron-doped diamond electrodes. J Electroanal Chem 612(1):29–36. doi:10.1016/j.jelechem.2007.09.006

    Article  CAS  Google Scholar 

  27. Cao H, Lu D, Lin J, Ye Q, Wu J, Zheng G (2013) Novel Sb-doped ruthenium oxide electrode with ordered nanotube structure and its electrocatalytic activity toward chlorine evolution. Electrochim Acta 91:234–239

    Article  CAS  Google Scholar 

  28. Song S, Liang Y, Li Z, Wang Y, Fu R, Wu D, Tsiakaras P (2010) Effect of pore morphology of mesoporous carbons on the electrocatalytic activity of Pt nanoparticles for fuel cell reactions. Appl Catal B Environ 98(3):132–137

    Article  CAS  Google Scholar 

  29. Yi L, Liu L, Liu X, Wang X, Yi W, He P, Wang X (2012) Carbon-supported Pt–Co nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cell: electrocatalysis and fuel cell performance. Int J Hydrog Energy 37(17):12650–12658

    Article  CAS  Google Scholar 

  30. Seetharaman S, Balaji R, Ramya K, Dhathathreyan KS, Velan M (2014) Electrochemical behaviour of nickel-based electrodes for oxygen evolution reaction in alkaline water electrolysis. Ionics 20(5):713–720

    Article  CAS  Google Scholar 

  31. Federation WE & American Public Health Association (2005) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington, DC, USA

    Google Scholar 

  32. Fontana MG (2005) Corrosion engineering. Tata McGraw-Hill Education

  33. Kraft A, Stadelmann M, Blaschke M, Kreysig D (1999) Electrochemical water disinfection part I: hypochlorite production from very dilute chloride solutions. J.Appl.Electrochem. 29(7):859–866. doi:10.1023/A:1003650220511

    Article  Google Scholar 

  34. Kraft A, Blaschke M, Kreysig D, Sandt B (1999) Electrochemical water disinfection. Part II: hypochlorite production from potable water, chlorine consumption and the problem of calcareous deposits. J Appl Electrochem 29(8):895–902. doi:10.1023/A:1003654305490

    Article  CAS  Google Scholar 

  35. Shih YJ, Su CC, Huang CP (2015) The synthesis, characterization, and application of a platinum modified graphite electrode (Pt/G) exemplified by chloride oxidation. Sep Purif Technol 156:961–971. doi:10.1016/j.seppur.2015.09.045

    Article  CAS  Google Scholar 

  36. Breiter MW (1963) Voltammetric study of halide ion adsorption on platinum in perchloric acid solutions. Electrochim Acta 8(12):925–935. doi:10.1016/0013-4686(62)87047-9

    Article  Google Scholar 

  37. Khelifa A, Moulay S, Hannane F, Benslimene S (2004) Application of an experimental design method to study the performance of electrochlorination cells. Desalination 160(1):91–98. doi:10.1016/S0011-9164(04)90021-5

    Article  CAS  Google Scholar 

  38. Bergmann MEH, Koparal AS (2005) Studies on electrochemical disinfectant production using anodes containing RuO2. J Appl Electrochem 35:121321–121329. doi:10.1007/s10800-006-9143-x

    Article  Google Scholar 

  39. Badruzzaman M, Oppenheimer J, Adham S (2009) Innovative beneficial reuse of reverse osmosis concentrate using bipolar membrane electrodialysis and electrochlorination processes. J Membr Sci 326(2):392–399. doi:10.1016/j.memsci.2008.10.018

    Article  CAS  Google Scholar 

  40. Rajab M, Heim C, Letzel T, Drewes JE, Helmreich B (2015) Electrochemical disinfection using boron-doped diamond electrode—the synergetic effects of in situ ozone and free chlorine generation. Chemosphere 121:47–53

    Article  CAS  Google Scholar 

  41. Urbansky ET, Schock MR (1999) Issues in managing the risks associated with perchlorate in drinking water. J Environ Manag 56(2):79–95

    Article  Google Scholar 

  42. Charnley G (2008) Perchlorate: overview of risks and regulation. Food ChemToxicol 46(7):2307–2315. doi:10.1016/j.memsci.2008.10.018

    Article  CAS  Google Scholar 

  43. Choi J, Shim S, Yoon J (2013) Design and operating parameters affecting an electrochlorination system. J Ind Eng Chem 19(1):215–219

    Article  CAS  Google Scholar 

  44. Kerwick MI, Reddy SM, Chamberlain AHL, Holt DM (2005) Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection? Electrochim. Acta 50(25):5270–5277. doi:10.1016/j.electacta.2005.02.074

    CAS  Google Scholar 

  45. Mezule L, Denisova V, Briedis A, Reimanis M, Ozolins J, Juhna T (2015) Disinfection effect of electrochemically generated chlorine on surface associated Escherichia coli in a drinking water system. Desalin Water Treat 53(13):3704–3710. doi:10.1080/19443994.2013.873742

    Article  CAS  Google Scholar 

  46. Kelsall GH (1984) Hypochlorite electro-generation. I. A parametric study of a parallel plate electrode cell. J Appl Electrochem 14(2):177–186

    Article  CAS  Google Scholar 

  47. Rengarajan V, Sozhan G, Narasimham KC (1996) Influence factors in the electrolytic production of sodium hypochlorite. B Electrochem 12(5):327–328

    CAS  Google Scholar 

  48. Krstajić N, Nakić V, Spasojević M (1991) Hypochlorite production II. Direct electrolysis in a cell divided by an anionic membrane. 21.7:637–641

  49. Bergmann H, Iourtchouk T, Schops K, Bouzek K (2002) New UV irradiation and direct electrolysis—promising methods for water disinfection. Chem Eng J 85(2):111–117. doi:10.1016/S1385-8947(01)00188-7

    Article  CAS  Google Scholar 

  50. Chakrabarti MH (2012) On site electrochemical production of sodium hypochlorite disinfectant for a power plant utilizing seawater. Int J Electrochem Sci 7:3929–3938

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayeeta Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, J., Gupta, S.K. A novel electro-chlorinator using low cost graphite electrode for drinking water disinfection. Ionics 23, 1903–1913 (2017). https://doi.org/10.1007/s11581-017-2022-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2022-0

Keywords

Navigation