Skip to main content
Log in

Studies on electrochemical disinfectant production using anodes containing RuO2

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 20 May 2006

Abstract

The present work contains results for artificial water electrolysis in discontinuous operation using laboratory reactors without separators. Rotating anodes with mixed oxide coatings containing IrO2/RuO2 were used. The experimental parameters were the chloride concentration, current density, rotation rate, cathode material, pH and water composition. Active and total chlorine concentrations and current efficiencies were obtained. It was shown that even for very low chloride concentrations, chlorine formation occurs, but side effects and side reactions significantly lower the efficiency in this case. Nitrite and ammonia formation was found to reduce the efficiency of chlorine formation. Partial polarization curves were obtained in kinetic experiments using solutions containing chloride and sulphate ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Δ:

difference

κ0 :

initial value of specific conductivity, S cm−1

Λ:

equivalent ionic conductivity, m2 A V−1 mol−1

Φ:

electrical potential, V

\(\upvarphi\) :

current efficiency, %

AC:

active chlorine

c :

concentration, mg dm−3

D :

coefficient of diffusion, m2 s−1

diss.:

dissolved

E :

electrode potential, V vs SHE

F :

Faraday constant, A s mol−1

i :

current density, mA cm−2

I :

current, A

j :

component j

M :

Molaric mass, g mol−1

N :

molaric flux, mol s−1 m−2

n :

number of electrons

rpm:

revolutions per minute

SHE:

standard hydrogen electrode, V

t :

time, s, min

V :

electrolyte volume, dm3

w :

velocity, m s−1

x :

coordinate, m

z :

charge number

References

  1. H. Bergmann, T. Iourtchouk and K. Schöps, in ‘GDCh Monographie’, Vol. 23, 2001, pp. 155–162

  2. Bergmann H., Iourtchouk T., Schoeps K., Ehrig F., (2001) gwf-Wasser, Abwasser 142: 856

    CAS  Google Scholar 

  3. Matsunaga T., Nakasono S., Masuda S., (1992) FEMS Microbiol. Lett. 93: 255

    Article  CAS  Google Scholar 

  4. Slipcenko A.V., Slipcenko V.A., (1988) Elektron. Obrabotka materialov (Russ.) 1: 40

    Google Scholar 

  5. H. Bergmann, Neue Desinfektionstechnik/New disinfection technologies – Research Report BMBF/AIF Reg. No. 1703798 (2000), Anhalt University Koethen

  6. Kraft A., Stadelmann M., Blaschke M., Kreysig D., Sandt B., Schröder P., (1999) J. Appl. Electrochem. 29: 861

    CAS  Google Scholar 

  7. Bergmann H., Iourtchouk T., Schoeps K., Bouzek K., (2002) Chem. Engin. Journ. 85: 111

    Article  CAS  Google Scholar 

  8. Nieuwenhuijsen M.J. Toledano M.B., Eaton N.E., Fawell J., Elliott P., (2000) Occup. Environm. Med. 57: 73

    Article  PubMed  CAS  Google Scholar 

  9. Richardson S.D., Thruston A.D. JR, Caughran T.V., Chen P.H., Collette T.W., Schenck K.M., Lykins B.W. JR., Rav-Acha C., Glezer V., (2000) Water, Air and Soil Pollution 123: 95

    Article  CAS  Google Scholar 

  10. Czarnetzki L.R., Janssen L.J.J., (1992) J. Appl. Electrochem. 22: 315

    Article  CAS  Google Scholar 

  11. C. Oloman, ‘Electrochemical Processing for the Pulp and Paper Industry’, (The Electrochemical Consultancy, Underhill/England, 1996), 133 pp

  12. Tasaka A., Tojo T., (1985) J. Electrochem. Soc. 132: 1855

    Article  CAS  Google Scholar 

  13. S. Trasatti, inElectrochemistry of Novel Materials’, (VCH Publishers, New York, 1994) 238 pp

  14. Hsu Sh.-Y., (2005) J. Food. Ind. 66: 171

    Google Scholar 

  15. Gordon G., Emmert G., Gauw R., Bubnis B., (1998) Ozone Science and Engineering 20: 239

    Article  CAS  Google Scholar 

  16. Bergmann H., (2005) gwf - Wasser, Abwasser 146: 126

    CAS  Google Scholar 

  17. Foller P.C., Tobias C.W., (1982) J. Electrochem. Soc. 129: 515

    Article  Google Scholar 

  18. Dhar H.P., Bockris J.O’M., Lewis D.H., (1981) J. Electrochem. Soc. 128: 229

    Article  CAS  Google Scholar 

  19. Lissens G., Pieters J., Verhaege M., Pinoy L., Verstraete W., (2003) Electrochimica Acta 48: 1655

    Article  CAS  Google Scholar 

  20. Bouzek K., Paidar M., Sadilkova A., Bergmann H., (2001) J. Appl. Electrochem. 31: 1185

    Article  CAS  Google Scholar 

  21. Gordon G., (2002) Journal American Water Works Association 94: 111

    CAS  Google Scholar 

  22. K. Höll (ed.), ‘Wasser’, (de Gruyter, Berlin, New York, 2002) 610 pp

  23. D.R. Lide (ed.), ‘Handbook of Chemistry and Physics’, 83rd ed., (Boca Raton, FL, 2002), pp. 5–96

  24. White G.C., (1999) Handbook of chlorination and alternatives disinfectants. John Wiley and Sons, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. H. Bergmann.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10800-006-9143-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergmann, M.E.H., Koparal, A.S. Studies on electrochemical disinfectant production using anodes containing RuO2 . J Appl Electrochem 35, 1321–1329 (2005). https://doi.org/10.1007/s10800-005-9064-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9064-0

Key words:

Navigation