Skip to main content

Advertisement

Log in

Effect of NH4I and I2 concentration on agar gel polymer electrolyte properties for a dye-sensitized solar cell

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Gel polymer electrolytes were prepared using agar polymer host, NH4I, and I2 salts. The sample of agar paste with 1.0 M of NH4I and 0.2 μM of I2 exhibits the highest conductivity and lowest viscosity values at room temperature of (2.64 ± 0.19) × 10−3 S cm−1 and 1.17 ± 0.29 Pa s, respectively. All of the gel polymer electrolytes display Arrhenian behavior, and the optimum agar paste gave the lowest activation energy of 0.25 eV. It also had a good physical appearance compared with the other samples. This gel polymer electrolyte had a good potential and was applicable to a role as electrolyte in ITO-ZnO (N719 dye)/agar paste + 1.0 M NH4I + 0.2 μM I2/Au-Pd-ITO dye-sensitized solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Honda K, Fujishima A (1972) Nature 238:37

    Google Scholar 

  2. O’Regan B, Gratzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  3. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Graetzel M (1993) J Am Chem Soc 115:6382–6390

    Article  CAS  Google Scholar 

  4. Saito M, Fujihara S (2008) Energy Environ Sci 1:280–283

    Article  CAS  Google Scholar 

  5. Hara K, Horiguchi T, Kinoshita T, Sayama K, Sugihara H, Arakawa H (2000) Sol Energy Mater Sol Cells 64:115–134

    Article  CAS  Google Scholar 

  6. Wang Y (2009) Sol Energy Mater Sol Cells 93:1167–1175

    Article  CAS  Google Scholar 

  7. Kubo W, Murakoshi K, Kitamura T, Yoshida S, Haruki M, Hanabusa K, Shirai H, Wada Y, Yanagida S (2001) J Phys Chem B 105:12809–12815

    Article  CAS  Google Scholar 

  8. Hara K, Arakawa H (2005) Dye-sensitized solar cells. In: Luque A, Hegedus S (eds) Handbook of photovoltaic science and engineering. Wiley, New York, pp 663–700

    Chapter  Google Scholar 

  9. Keis K, Magnusson E, Lindström H, Lindquist S-E, Hagfeldt A (2002) Sol Energy Mater Sol Cells 73:51–58

    Article  Google Scholar 

  10. Mohamad SA, Yahya R, Ibrahim ZA, Arof AK (2007) Sol Energy Mater Sol Cells 91:1194–1198

    Article  CAS  Google Scholar 

  11. Suzuki K, Yamaguchi M, Kumagai M, Tanabe N, Yanagida S (2006) C R Chim 9:611–616

    Article  CAS  Google Scholar 

  12. Kaneko M, Hoshi T (2003) Chem Lett 32:872–873

    Article  CAS  Google Scholar 

  13. Kaneko M, Hoshi T, Kaburagi Y, Ueno H (2004) J Electroanal Chem 572:21–27

    Article  CAS  Google Scholar 

  14. Mohamad SA, Ali MH, Yahya R, Ibrahim ZA, Arof AK (2007) Ionics 13:235–240

    Article  CAS  Google Scholar 

  15. Norman FS (2006) 2nd ed., CRC Press

  16. Teramoto A, Fuchigami M (2000) J Food Sci 65:491–497

    Article  CAS  Google Scholar 

  17. Cairns P, Atkins EDT, Miles MJ, Morris VJ (1991) Int J Biol Macromol 13:65–68

    Article  CAS  Google Scholar 

  18. Piculell L, Borgström J, Chronakis IS, Quist PO, Viebke C (1997) Int J Biol Macromol 21:141–153

    Article  CAS  Google Scholar 

  19. Ciancia M, Milas M, Rinaudo M (1997) Int J Biol Macromol 20:35–41

    Article  CAS  Google Scholar 

  20. Wang W, Guo X, Yang Y (2011) Electrochim Acta 56:7347–7351

    Article  CAS  Google Scholar 

  21. Yang Y, Hu H, Zhou C-H, Xu S, Sebo B, Zhao X-Z (2011) J Power Sources 196:2410–2415

    Article  CAS  Google Scholar 

  22. Hara K, Horiguchi T, Kinoshita T, Sayama K, Arakawa H (2001) Sol Energy Mater Sol Cells 70:151–161

    Article  CAS  Google Scholar 

  23. Maurya KK, Srivastava N, Hashmi SA, Chandra S (1992) J Mater Sci 27:6357–6364

    Article  CAS  Google Scholar 

  24. Buraidah MH, Teo LP, Majid SR, Arof AK (2010) Opt Mater 32:723–728

    Article  CAS  Google Scholar 

  25. Alias SS, Ismail AB, Mohamad AA (2009) J Alloy Compd 499:231–237

    Article  Google Scholar 

  26. Al-Kahlout A, Vieira D, Avellaneda C, Leite E, Aegerter M, Pawlicka A (2009) Ionics 16:13–19

    Article  Google Scholar 

  27. Wang M, Qi L, Zhao F, Dong S (2005) J Power Sources 139:223–229

    Article  CAS  Google Scholar 

  28. Tan WC, Alias SS, Ismail AB, Mohamad AA (2011) J Solid State Electrochem :1-10

  29. Bonhote P, Dias A-P, Papageorgiou N, Kalyanasundaram K, Gratzel M (1996) Inorg Chem 35:1168–1178

    Article  CAS  Google Scholar 

  30. Kalaignan GP, Kang M-S, Kang YS (2006) Solid State Ion 177:1091–1097

    Article  CAS  Google Scholar 

  31. Vieira DF, Avellaneda CO, Pawlicka A (2007) Electrochim Acta 53:1404–1408

    Article  CAS  Google Scholar 

  32. Salihoǧlu S, Tarı Ö, Yurtseven H (2002) Mater Chem Phys 73:339–342

    Article  Google Scholar 

  33. Renard I, Li H, Marsan B (2003) Electrochim Acta 48:831–844

    Article  CAS  Google Scholar 

  34. Ueno H, Endo Y, Kaburagi Y, Kaneko M (2004) J Electroanal Chem 570:95–100

    Article  CAS  Google Scholar 

  35. Wu J, Lan Z, Wang D, Hao S, Lin J, Huang Y, Yin S, Sato T (2006) Electrochim Acta 51:4243–4249

    Article  CAS  Google Scholar 

  36. Ramesh N, Duda JL (2001) J Membr Sci 191:13–30

    Article  CAS  Google Scholar 

  37. Saikia D, Kumar A (2005) Eur Polym J 41:563–568

    Article  CAS  Google Scholar 

  38. Yue Z, McEwen IJ, Cowie JMG (2003) Solid State Ion 156:155–162

    Article  CAS  Google Scholar 

  39. Mallik H, Sarkar A (2006) J Non-Cryst Solids 352:795–800

    Article  CAS  Google Scholar 

  40. Calogero G, Marco GD (2008) Sol Energy Mater Sol Cells 92:1341–1346

    Article  CAS  Google Scholar 

  41. Shobukawa H, Tokuda H, Tabata S-I, Watanabe M (2004) Electrochim Acta 50:305–309

    Article  CAS  Google Scholar 

  42. Philias JM, Marsan B (1999) Electrochim Acta 44:2915–2926

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SSA would like to thank MOSTI for the NSF scholarship and USM-RU-PRGS for grant no. 8031020. AAM is grateful for the financial support for the study provided by USM Short Term grant no. 6039030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Azmin Mohamad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alias, S.S., Mohamad, A.A. Effect of NH4I and I2 concentration on agar gel polymer electrolyte properties for a dye-sensitized solar cell. Ionics 19, 1185–1194 (2013). https://doi.org/10.1007/s11581-012-0840-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0840-7

Keywords

Navigation