Skip to main content
Log in

Improvement in rate capability of lithium-rich cathode material Li[Li0.2Ni0.13Co0.13Mn0.54]O2 by Mo substitution

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium-rich cathode material Li[Li0.2Ni0.13Co0.13Mn0.54]O2 doped with trace Mo is successfully synthesized by a sol-gel method. The X-ray diffraction patterns show that trace Mo substitution increases the inter-layer space of the material, of which is benefiting to lithium ion insertion/extraction among the electrode materials. The (CV) tests demonstrate the decrease of polarization, and on the other hand, the lithium ion diffusion coefficient (D Li) of the modified material turns out to be larger, which indicates a faster electrochemical process. As a result, the Mo doped material possesses high rate performance and good cycling stability, and the initial discharge capacity reaches 149.3 mAh g−1 at a current density of 5.0 °C, and the residual capacity is 144.0 mAh g−1 after 50 cycles with capacity retention of 96.5 % in the potential range of 2.0–4.8 V at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhou LZ, Xu QJ, Liu MS, Jin X (2013) Novel solid-state preparation and electrochemical properties of Li1.13[Ni0.2Co0.2Mn0.47]O2 material with a high capacity by acetate precursor for Li-ion batteries. Solid State Ionics 249-250:134–138

    Article  CAS  Google Scholar 

  2. Wang Y, Li H, He P, Hosono E, Zhou H (2010) Nano active materials for lithium-ion batteries. Nanoscale 2:1294–1305

    Article  CAS  Google Scholar 

  3. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3125

    Article  CAS  Google Scholar 

  4. He P, Yu H, Li D, Zhou H (2012) Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem 22:3680–3695

    Article  CAS  Google Scholar 

  5. Kang SH, Kempgens P, Greenbaum S, Kropf A, Amine K (2007) Thackeray, M. Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5−xNi0.5−xCo2x, 0 ≤ x ≤ 0.5). J Mater Chem 17:2069–2077

  6. Liu J, Hou M, Yi J, Guo S, Wang C, Xia Y (2014) Improving the electrochemical performance of layered lithium-rich transition-metal oxides by controlling the structural defects. Energ Environ Sci 7:705–714

    Article  CAS  Google Scholar 

  7. Hosono E, Saito T, Hoshino J, Mizuno Y, Okubo M, Asakura D, Kagesawa K, Nishio-Hamane D, Kudo T, Zhou H (2013) Synthesis of LiNi0.5Mn1.5O4 and 0.5Li2MnO3–0.5LiNi1/3Co1/3Mn1/3O2 hollow nanowires by electrospinning. CrystEngComm 15:2592–2597

    Article  CAS  Google Scholar 

  8. Shi SJ, Tu JP, Mai YJ, Zhang YQ, Gu CD, Wang X (2012) Effect of carbon coating on electrochemical performance of Li1.048Mn0.381Ni0.286Co0.286O2 cathode material for lithium-ion batteries. Electrochim Acta 63:112–117

    Article  CAS  Google Scholar 

  9. Wang C, Liu H, Yang W (2012) An integrated core-shell structured Li3V2(PO4) 3@C cathode material of LIBs prepared by a momentary freeze-drying method. J Mater Chem 22:5281–5285

    Article  CAS  Google Scholar 

  10. Su J, Wu XL, Lee JS, Kim J, Guo YG (2013) A carbon-coated Li3V2(PO4)3 cathode material with an enhanced high-rate capability and long lifespan for lithium-ion batteries. J Mater Chem A 1:2508–2514

    Article  CAS  Google Scholar 

  11. Seok Jung Y, Cavanagh AS, Yan Y, George SM, Manthiram A (2011) Effects of atomic layer deposition of Al2O3 on the Li[Li0.20Mn0.54Ni0.13Co0.13]O2 cathode for lithium-ion batteries. J Eelctrochem Soc 158:A1298–A1302

    Article  Google Scholar 

  12. West WC, Soler J, Smart MC, Ratnakumar BV, Firdosy S, Ravi V, Anderson MS, Hrbacek J, Lee ES, Manthiram A (2011) Electrochemical behavior of layered solid solution Li2MnO3−LiMO2 (M = Ni, Mn, Co) Li-ion cathodes with and without alumina coatings. J Eelctrochem Soc 158:A883–A889

    Article  CAS  Google Scholar 

  13. Singh G, Thomas R, Kumar A, Katiyar RS, Manivannan A (2012) Electrochemical and structural investigations on ZnO treated 0.5 Li2MnO3-0.5LiMn0.5Ni0.5O2 layered composite cathode material for lithium ion battery. J Eelctrochem Soc 159:A470–A478

    Article  CAS  Google Scholar 

  14. Shi SJ, Tu JP, Tang YY, Liu XY, Zhang YQ, Wang XL, Gu CD (2013) Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method. Electrochim Acta 88:671–679

    Article  CAS  Google Scholar 

  15. Zheng JM, Li J, Zhang ZR, Guo XJ, Yang Y (2008) The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics 179:1794–1799

    Article  CAS  Google Scholar 

  16. Liu B, Zhang Q, He S, Sato Y, Zheng J, Li D (2011) Improved electrochemical properties of Li1.2Ni0.18Mn0.59Co0.03O2 by surface modification with LiCoPO4. Electrochim Acta 56:6748–6751

    Article  CAS  Google Scholar 

  17. Wang CC, Manthiram A (2013) Influence of cationic substitutions on the first charge and reversible capacities of lithium-rich layered oxide cathodes. J Mater Chem A 1:10209–10217

    Article  CAS  Google Scholar 

  18. Yu H, Zhou H (2012) Initial Coulombic efficiency improvement of the Li1.2Mn0.567Ni0.166Co0.067O2 lithium-rich material by ruthenium substitution for manganese. J Mater Chem 22:15507–15510

    Article  CAS  Google Scholar 

  19. Park JH, Lim J, Yoon J, Park KS, Gim J, Song J, Park H, Im D, Park M, Ahn D, Paik Y, Kim J (2012) The effects of Mo doping on 0.3Li[Li0.33Mn0.67]O2.0.7Li[Ni0.5Co0.2Mn0.3]O2 cathode material. Dalton T 41:3053–3059

    Article  CAS  Google Scholar 

  20. Pouchko SV, Ivanov-Schitz AK, Kulova TL, Skundin AM, Turevskaya EP (2002) Sol–gel fabrication and lithium insertion kinetics of the Mo-doped lithium vanadium oxide thin films Li1+xMoyV3−yO8. Solid State Ionics 151:129–140

    Article  CAS  Google Scholar 

  21. Park S, Oh S, Myung S, Sun Y (2004) Mo6+-doped Li [Ni(0.5+ x)Mn(1.5-2x)MOx]O4 spinel materials for 5 V lithium secondary batteries prepared by ultrasonic spray pyrolysis. Eelctrochem Solid ST 7:A451–A454

    Article  CAS  Google Scholar 

  22. Jafta CJ, Ozoemena KI, Mathe MK, Roos WD (2012) Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery. Electrochim Acta 85:411–422

    Article  CAS  Google Scholar 

  23. Luo W, Dahn JR (2011) The impact of Zr substitution on the structure, electrochemical performance and thermal stability of Li[Ni1/3Mn1/3−zCo1/3Zrz]O2. J Eelctrochem Soc 158:A428–A433

    Article  CAS  Google Scholar 

  24. Woo SW, Myung ST, Bang H, Kim DW, Sun YK (2009) Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochim Acta 54:3851–3856

    Article  CAS  Google Scholar 

  25. Wilcox J, Patoux S, Doeff M (2009) Structure and electrochemistry of LiNi1/3Co1/3-yMyMn1/3O2 (M = Ti, Al, Fe) positive electrode materials. J Eelctrochem Soc 156:A192–A198

  26. Gao H, Jiao L, Peng W, Liu G, Yang J, Zhao Q, Qi Z, Si Y, Wang Y, Yuan H (2011) Enhanced electrochemical performance of LiFePO4/C via Mo-doping at Fe site. Electrochim Acta 56:9961–9967

    Article  CAS  Google Scholar 

  27. Thackeray M, Kang SH, Johnson C, Vaughey J, Hackney S (2006) Comments on the structural complexity of lithium-rich Li1+xM1-xO2 electrodes (M = Mn, Ni, Co) for lithium batteries. Electrochem Commun 8:1531–1538

    Article  CAS  Google Scholar 

  28. Jarvis KA, Deng Z, Allard LF, Manthiram A (2011) Ferreira PJ (2011) Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem Mater 23:3614–3621

    Article  CAS  Google Scholar 

  29. Boulineau A, Croguennec L, Delmas C, Weill F (2009) Reinvestigation of Li2MnO3 structure: electron diffraction and high resolution TEM. Chem Mater 21:4216–4222

    Article  CAS  Google Scholar 

  30. Gong ZL, Liu HS, Guo XJ, Zhang ZR, Yang Y (2004) Effects of preparation methods of LiNi0. 8Co0. 2O2 cathode materials on their morphology and electrochemical performance. J Power Sources 136:139–144

    Article  CAS  Google Scholar 

  31. Zhang YD, Li Y, Niu XQ, Wang DH, Zhou D, Wang XL, Gu CD, Tu JP (2015) Peanut-like hierarchical micro/nano Li1.2Mn0.54Ni0.18Co0.08O2 cathode material for lithium-ion batteries with enhanced electrochemical performance. J Mater Chem A 3:14291–14297

    Article  CAS  Google Scholar 

  32. Wang D, Huang Y, Huo Z, Chen L (2013) Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material. Electrochim Acta 107:461–466

    Article  CAS  Google Scholar 

  33. Song B, Liu Z, Lai MO, Lu L (2012) Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material. Phys Chem Chem Phys 14:12875–12883

    Article  CAS  Google Scholar 

  34. Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) Advances in manganese-oxide ʻcomposite’ electrodes for lithium-ion batteries. J Mater Chem 15:2257–2267

    Article  CAS  Google Scholar 

  35. Song B, Lai MO, Lu L (2012) Influence of Ru substitution on Li-rich 0.55Li2MnO3·0.45LiNi1/3Co1/3Mn1/3O2 cathode for Li-ion batteries. Electrochim Acta 80:187–195

    Article  CAS  Google Scholar 

  36. Koga H, Croguennec L, Menetrier M, Douhil K, Belin S, Bourgeois L, Suard E, Weill F, Delmas C (2013) Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J Eelctrochem Soc 160:A786–A792

    Article  CAS  Google Scholar 

  37. Boulineau A, Simonin L, Colin JF, Bourbon C, Patoux S (2013) First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett 13:3857–3863

    Article  CAS  Google Scholar 

  38. Yabuuchi N, Yoshii K, Myung ST, Nakai I, Komaba S (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc 133:4404–4419

    Article  CAS  Google Scholar 

  39. Zheng J, Zhang Z, Wu X, Dong Z, Zhu Z, Yang Y (2008) The effects of AlF3 coating on the performance of Li [Li0.2Mn0.54Ni0.13Co0. 13] O2 positive electrode material for lithium-ion battery. J Eelctrochem Soc 155:A775–A782

    Article  CAS  Google Scholar 

  40. Song B, Liu H, Liu Z, Xiao P, Lai MO, Lu L (2013) High rate capability caused by surface cubic spinels in Li-rich layer-structured cathodes for Li-ion batteries. Sci Rep 3:3094

    Google Scholar 

  41. Zheng J, Wu X, Yang Y (2013) Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation. Electrochim Acta 105:200–208

    Article  CAS  Google Scholar 

  42. Zhu GN, Wang CX, Xia YY (2011) A comprehensive study of effects of carbon coating on Li4Ti5O12 anode material for lithium-ion batteries. J Eelctrochem Soc 158:A102–A109

    Article  CAS  Google Scholar 

  43. Wu Y, Vadivel Murugan A, Manthiram A (2008) Surface modification of high capacity layered Li[Li 0.2Mn 0.54]Ni0.13Co 0.13]O2 cathodes by AlPO4. J Eelctrochem Soc 155:A635–A641

    Article  CAS  Google Scholar 

  44. Di W, Xianyou W, Xiu KY, Rui ZY, Long G, Hong BS (2015) Polyaniline modification and performance enhancement of lithium-rich cathode material based on layered-spinel hybrid structure. J. Power Sources 293:89–9445

    Article  Google Scholar 

  45. Wang YX, Shang KH, He W, Ai XP, Cao YL, Yang HX (2015) Magnesium-doped Li1.2[Co0.13Ni0.13Mn0.54]O2 for lithium-ion battery cathode with enhanced cycling stability and rate capability. ACS Appl Mater Interfaces 7:13014–13021

    Article  CAS  Google Scholar 

  46. Gallagher KG, Croy JR, Balasubramanian M, Bettge M, Abraham DP, Burrell AK, Thackeray MM (2013) Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes. Electrochem Commun 33:96–98

    Article  CAS  Google Scholar 

  47. Mohanty D, Sefat AS, Kalnaus S, Li J, Meisner RA, Payzant EA, Abraham DP, Wood DL, Daniel C (2013) Investigating phase transformation in the Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies. J Mater Chem A 1:6249–6261

    Article  CAS  Google Scholar 

  48. Shi SJ, Tu JP, Zhang YD, Zhang YJ, Gu CD, Wang XL (2013) Morphology and electrochemical performance of Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode materials prepared with different metal sources. Electrochim Acta 109:828–834

    Article  CAS  Google Scholar 

  49. Jiang KC, Wu XL, Yin YX, Lee JS, Kim J, Guo YG (2012) Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries. ACS Appl Mater Inter 4:4858–4563

    Article  CAS  Google Scholar 

  50. Jin X, Xu Q, Yuan X, Zhou L, Xia Y (2013) Synthesis, characterization and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2cathode materials for lithium-ion batteries. Electrochim Acta 114:605–610

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Shanghai Natural Science Fund (No.15ZR1418100) and Shanghai Enterprise Independent Innovation Special Project (No.CXY-2014-24) and Shanghai Science and Technology Committee (No. 14DZ2261000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunjie Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Xu, Q., Liu, X. et al. Improvement in rate capability of lithium-rich cathode material Li[Li0.2Ni0.13Co0.13Mn0.54]O2 by Mo substitution. Ionics 22, 1369–1376 (2016). https://doi.org/10.1007/s11581-016-1675-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1675-4

Keywords

Navigation