Skip to main content

Advertisement

Log in

Storage performance with different charged state of manganese spinel battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The power battery was manufactured with the commercial LiMn2O4 and graphite, and its storage performances with different charged state were studied. Structure, morphology, and surface-state change of the LiMn2O4 before and after storage were observed by XRD, SEM, XPS, CV, and AC technique, respectively. The electrochemical performances of LiMn2O4 battery were tested. The result shows that the capacity recovery of LiMn2O4 stored at discharge state is best (99.2%). While that of full-charged state is worst (93.6%). The cyclic performance of LiMn2O4 battery after storage is improved. The cyclic performance of LiMn2O4 stored at full-charged state is best (capacity retention ratio of 89.8% after 200 cycles), while that of before storage is 83.0%. The crystal of the spinel was destroyed after storage, and the intensity of breakage is increased with charge state increasing. The amount of soluble Mn and Li-ion migration resistance (R f) are increased with charge state increasing, and the oxygen loss is detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blyr A, Sigala C, Amatucci G, Guyomard D, Chabre Y, Tarascon JM (1998) J Electrochem Soc 145:194–198

    Article  CAS  Google Scholar 

  2. Pasquier D, Blyr A, Courjal P et al (1999) J Electrochem Soc 146:428–436

    Article  Google Scholar 

  3. Xia YY, Sakai T, Fujieda T, Yang XQ, Sun X, Ma ZF, McBreen J, Yoshio M (2001) J Electrochem Soc 148:A723–A727

    Article  CAS  Google Scholar 

  4. Shim J, Kostecki R, Richardson T, Song X, Striebel KA (2002) J Power Sources 112:222–230

    Article  CAS  Google Scholar 

  5. Wohlfahrt-Mehrens M, Vogler C, Garche J (2004) J Power Sources 127:58–64

    Article  CAS  Google Scholar 

  6. Zheng ZS, Tang ZL, Zhang ZT, Shen WC (2003) J Inorg Mater 18:257–263

    CAS  Google Scholar 

  7. Liu DQ, Liu XQ, He ZZ (2007) Alloy Compd 436:387–391

    Article  CAS  Google Scholar 

  8. XF Li, Xu YL (2007) Applied Surface Science 253:8592–8596

  9. Myung ST, Komaba S, Hirosaki N, Kumagai N (2002) Electrochem Commun 4:397–401

    Article  CAS  Google Scholar 

  10. Hibino M, Nakamura M, Kamitaka Y (2006) Solid State Ionics 177:2653–2656

    Article  CAS  Google Scholar 

  11. Antonini A, Bellitto C, Pasquali M, Pistoia G (1998) J EIectrochem Soc 145:2726–2731

    Article  CAS  Google Scholar 

  12. Lu W, Belharouak I, Park SH, Sun YK, Amine K (2007) Electrochem Acta 52:5837–5842

    Article  CAS  Google Scholar 

  13. Komaba S, Oikawa K, Myung ST (2002) Solid State Ionics 149:47–52

    Article  CAS  Google Scholar 

  14. Amine K, Tukamoto H, Yasuda H (1997) J Power Sources 68:604–608

    Article  CAS  Google Scholar 

  15. Hong YS, Han CH, Kim K (2001) Solid State Ionics 139:75–80

    Article  CAS  Google Scholar 

  16. Kumar G, Schlorb H, Rahner D (2001) Mater Chem Phys 70:117–123

    Article  CAS  Google Scholar 

  17. Alcantara R, Jaraba M, Lavela P, Tirado JL (2004) J Electrochem Soc 151:A53–A58

    Article  CAS  Google Scholar 

  18. Yoon CS, Kim CK, Sun YK (2002) J Power Sources 109:234–238

    Article  CAS  Google Scholar 

  19. Kang YJ, Kim JH, Sun YK (2005) J Power Sources 146:237–240

    Article  CAS  Google Scholar 

  20. Liu HY, Deng GQ, Guo YL (2008) J Rare Earths 26:722–726

    Article  Google Scholar 

  21. Shin Y, Manthiram A (2002) Electrochem Solid State Lett 5:A55–A57

    Article  CAS  Google Scholar 

  22. Eftekhari A (2004) Solid State Ionics 167:237–242

    Article  CAS  Google Scholar 

  23. Gnanaraj JS, Pol VG, Gedanken A (2003) Electrochem Commun 5:940–945

    Article  CAS  Google Scholar 

  24. Yamane H, Saitoh M, Sano M (2002) J Electrochem Soc 149:1514–1520

    Article  Google Scholar 

  25. Takahashi K, Saitoh M, Asakura N (2004) J Power Sources 136:115–121

    Article  CAS  Google Scholar 

  26. Saitoh M, Sano M, Fujita M (2004) J Electrochem Soc 151:A17–A22

    Article  CAS  Google Scholar 

  27. Li Y, Takahashi M, Wang BF (2006) Electrochem Acta 51:3228–3234

    Article  Google Scholar 

  28. Cho J, Thackeray MM (1999) J Electrochem Soc 146:3577–3581

    Article  CAS  Google Scholar 

  29. Tarascon JM, Mckinnon WR, Goowar F (1994) J Electrochem Soc 141:1421–1431

    Article  CAS  Google Scholar 

  30. Xia YY, Yoshio M (1997) J Power Sources 66:129–132

    Article  CAS  Google Scholar 

  31. Levi MD, Gamolsky K, Aurbach D (2000) J Electrochem Soc 147:25–33

    Article  CAS  Google Scholar 

  32. Deng BH, Nakamurab H, Yoshio M (2008) J Power Sources 180:864–868

    Article  CAS  Google Scholar 

  33. Molenda J, Ziemnicki M, Marzec J, Zajac W, Molenda M, Bucko M (2007) J Power Sources 173:707–711

    Article  CAS  Google Scholar 

  34. Liu YJ, Li XH, Guo HJ (2009) J Power Souces 189:721–725

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was sponsored by Advanced Person Fund of Jiangsu University (10JDG041) and the Natural Science Foundation of Jiangsu Province (BK2011530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjian Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Guo, H., Li, X. et al. Storage performance with different charged state of manganese spinel battery. Ionics 18, 643–648 (2012). https://doi.org/10.1007/s11581-012-0680-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0680-5

Keywords

Navigation