Skip to main content
Log in

Structural and electrochemical characterization of Ce0.85Ca0.05Sm0.1O1.9 oxide ion electrolyte with Sr-doped LaMnO3 and SmCoO3 cathodes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This paper reports on the electrochemical properties and chemical stability of a recently developed Ca2+ and Sm3+-doped oxide ion conducting electrolyte, Ce0.85Ca0.05Sm0.1O1.9 (CCS), employed in an intermediate temperature solid oxide fuel cell (IT-SOFC) using conventional Sm0.5Sr0.5CoO3 (SSC) and La0.8Sr0.2MnO3 (LSM) cathodes in air at elevated temperatures. The materials were prepared by conventional solid-state reactions using their corresponding metal oxides and salts in the temperature range of 1,200–1,450 °C in air. Powder X-ray diffraction (PXRD) and impedance spectroscopy were employed for phase formation, chemical compatibility, and electrochemical characterization. PXRD studies on 1:1 weight ratio of heat-treated (1,000 °C for 3 days) mixtures of SSC or LSM and CCS revealed the presence of fluorite-type and perovskite-like phases. The area-specific resistance (ASR) value in air was lower for SSC cathodes (4.3–0.15 Ω cm2) compared to those of LSM (407–11 Ω cm2) over the investigated temperature range of 600–800 °C. As expected, a significant increase in ASR was observed in Ar as compared to air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lashtabeg A, Skinner SJ (2006) J Mater Chem 16:3161

    Article  CAS  Google Scholar 

  2. Singh P, Minh NQ (2004) Int J Appl Ceram Technol 1:5

    Article  CAS  Google Scholar 

  3. Haile SM (2003) Acta Mater 51:5981

    Article  CAS  Google Scholar 

  4. Stambouli AB, Traversa E (2002) Renew Sustain Energy Rev 6:433

    Article  CAS  Google Scholar 

  5. Teiz F, Buchkremer HP, Stover D (2002) Solid State Ion 152–153:373

    Google Scholar 

  6. Yamamoto O (2000) Electrochim Acta 45:2423

    Article  CAS  Google Scholar 

  7. Adler SB (2004) Chem Rev 104:4791

    Article  CAS  Google Scholar 

  8. Mcevoy AJ (2001) J Mater Sci 36:1087

    Article  CAS  Google Scholar 

  9. Rossignol C, Ralph JM, Bae JM, Vaughey JT (2004) Solid State Ion 175:59

    Article  CAS  Google Scholar 

  10. Kim WH, Song HS, Moon J, Lee HW (2006) Solid State Ion 177:3211

    Article  CAS  Google Scholar 

  11. Dunyushkina LA, Adler SB (2005) J Electrochem Soc 152:A2040

    Article  CAS  Google Scholar 

  12. Wang S, Zhong H (2007) J Power Sources 165:58

    Article  CAS  Google Scholar 

  13. Jiang SP (2007) J Solid State Electrochem 11:93

    Article  CAS  Google Scholar 

  14. Co AC, Xia SJ, Birss VI (2005) J Electrochem Soc 152:A570

    Article  CAS  Google Scholar 

  15. Lee KT, Manthiram A (2007) Solid State Ion 178:995

    Article  CAS  Google Scholar 

  16. Prado F, Grunbaum N, Caerior A, Manthiram A (2004) Solid State Ion 176:147

    Article  CAS  Google Scholar 

  17. Xia C, Rauch W, Chen F, Liu M (2002) Solid State Ion 149:11

    Article  CAS  Google Scholar 

  18. Kammer K (2006) Solid State Ion 177:1047

    Article  CAS  Google Scholar 

  19. Hashimoto S, Kammer K, Larsen PH, Poulsen FW, Mogensen M (2005) Solid State Ion 176:1013

    Article  CAS  Google Scholar 

  20. Huang Y, Vohs JM, Gorte RJ (2006) J Electrochemical Soc 153:A951

    Article  CAS  Google Scholar 

  21. Colomer MT, Steele BCH, Kilner JA (2002) Solid State Ion 147:41

    Article  CAS  Google Scholar 

  22. Orui H, Watanabe K, Chiba R, Arakawa M (2004) J Electrochem Soc 151:A141

    Article  CAS  Google Scholar 

  23. Pearce MC, Thangadurai V (2008) Asia-Pac J Chem Eng (in press)

  24. Gostovic D, Smith JR, Kundinger DP, Jones KS, Wachsman ED (2007) Electrochem Solid-State Lett 10:B217

    Article  CAS  Google Scholar 

  25. Irvine JTS, Sinckair DC, West AR (1990) Adv Mater 2:132

    Article  CAS  Google Scholar 

  26. Thangadurai V, Weppner W (2006) Ionics 12:81

    Article  CAS  Google Scholar 

  27. Thangadurai V, Huggins RA, Weppner W (2002) J Power Sources 108:64

    Article  CAS  Google Scholar 

  28. Suzuki T, Awano M, Jasinski P, Petrovsky V, Anderson HU (2006) Solid State Ion 177:2071

    Article  CAS  Google Scholar 

  29. Fu C, Sun K, Zhang N, Chren X, Zhou D (2007) Electrochimica Acta 52:4589

    Article  CAS  Google Scholar 

  30. Xia C, Liu M (2001) Solid State Ion 144:249

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Foundation for Innovation (CFI) for their financial support. We also acknowledge the University of Calgary for financial support through the start-up grant and University Research Grants Committee (URGC) research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Thangadurai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearce, M.C., Thangadurai, V. Structural and electrochemical characterization of Ce0.85Ca0.05Sm0.1O1.9 oxide ion electrolyte with Sr-doped LaMnO3 and SmCoO3 cathodes. Ionics 14, 483–489 (2008). https://doi.org/10.1007/s11581-008-0240-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-008-0240-1

Keywords

Navigation