Skip to main content
Log in

Decoding disparity categories in 3-dimensional images from fMRI data using functional connectivity patterns

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Humans use binocular disparity to extract depth information from two-dimensional retinal images in a process called stereopsis. Previous studies usually introduce the standard univariate analysis to describe the correlation between disparity level and brain activity within a given brain region based on functional magnetic resonance imaging (fMRI) data. Recently, multivariate pattern analysis has been developed to extract activity patterns across multiple voxels for deciphering categories of binocular disparity. However, the functional connectivity (FC) of patterns based on regions of interest or voxels and their mapping onto disparity category perception remain unknown. The present study extracted functional connectivity patterns for three disparity conditions (crossed disparity, uncrossed disparity, and zero disparity) at distinct spatial scales to decode the binocular disparity. Results of 27 subjects’ fMRI data demonstrate that FC features are more discriminatory than traditional voxel activity features in binocular disparity classification. The average binary classification of the whole brain and visual areas are respectively 87% and 79% at single subject level, and thus above the chance level (50%). Our research highlights the importance of exploring functional connectivity patterns to achieve a novel understanding of 3D image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abraham A et al (2014) Machine learning for neuroimaging with scikit-learn. Front Neuroinform 8:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen EA et al (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24:663–676

    Article  PubMed  Google Scholar 

  • Anzai A et al (2011) Coding of stereoscopic depth information in visual areas V3 and V3A. J Neurosci 31:10270–10282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backus BT et al (2001) Human cortical activity correlates with stereoscopic depth perception. J Neurophysiol 86:2054–2068

    Article  CAS  PubMed  Google Scholar 

  • Baczkowski BM et al (2017) Sliding-window analysis tracks fluctuations in amygdala functional connectivity associated with physiological arousal and vigilance during fear conditioning. NeuroImage 153:168–178

    Article  PubMed  Google Scholar 

  • Barlow HB, Blakemore C, Pettigrew JD (1967) The neural mechanism of binocular depth discrimination. J Physiol 193:327–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betzel RF et al (2017) Multi-scale brain networks. NeuroImage 160:73–83

    Article  PubMed  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Breiman L (2017) Classification and regression trees. Routledge

  • Bridge H et al (2007) Topographical representation of binocular depth in the human visual cortex using fMRI. J Vis 7(15):1–14

    PubMed  Google Scholar 

  • Chao-Gan Y et al (2016) DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics 14:339–351

    Article  Google Scholar 

  • Dasdemir Y et al (2017) Analysis of functional brain connections for positive–negative emotions using phase locking value. Cogn Neurodyn 11:487–500

    Article  PubMed  PubMed Central  Google Scholar 

  • DeAngelis GC et al (1998) Cortical area MT and the perception of stereoscopic depth. Nature 394:677

    Article  CAS  PubMed  Google Scholar 

  • Deli E et al (2017) Relationships between short and fast brain timescales. Cogn Neurodyn 11:539–552

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang Y et al (2018) Semantic representation in the white matter pathway. PLoS Biol 16:e2003993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg DA et al (2010) Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS ONE 5:e15710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fields C et al (2017) Disrupted development and imbalanced function in the global neuronal workspace: a positive-feedback mechanism for the emergence of ASD in early infancy. Cogn Neurodyn 11:1–21

    Article  PubMed  Google Scholar 

  • Finlayson NJ et al (2017) Differential patterns of 2D location versus depth decoding along the visual hierarchy. NeuroImage 147:507–516

    Article  PubMed  Google Scholar 

  • Friston KJ et al (1995) Analysis of fMRI time-series revisited. NeuroImage 2:45–53

    Article  CAS  PubMed  Google Scholar 

  • Goncalves NR et al (2015) 7 Tesla FMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex. J Neurosci 35:3056–3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Castillo J et al (2015) Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns. Proc Natl Acad Sci 112:8762–8767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haxby JV (2012) Multivariate pattern analysis of fMRI: the early beginnings. NeuroImage 62:852–855

    Article  PubMed  Google Scholar 

  • Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430

    Article  CAS  PubMed  Google Scholar 

  • Haxby JV et al (2014) Decoding neural representational spaces using multivariate pattern analysis. Annu Rev Neurosci 37:435–456

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH et al (2015) Binocular stereoscopy in visual areas V-2, V-3, and V-3A of the macaque monkey. Cereb Cortex 25:959–971

    Article  PubMed  Google Scholar 

  • Hutchison RM et al (2014) Distinct and distributed functional connectivity patterns across cortex reflect the domain-specific constraints of object, face, scene, body, and tool category-selective modules in the ventral visual pathway. NeuroImage 96:216–236

    Article  PubMed  Google Scholar 

  • Kourtzi Z et al (2000) Cortical regions involved in perceiving object shape. J Neurosci 20:3310–3318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krug K et al (2011) Neurons in dorsal visual area V5/MT signal relative disparity. J Neurosci 31:17892–17904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambooij M et al (2009) Visual discomfort and visual fatigue of stereoscopic displays: a review. J Imaging Sci Technol 53:30201-1–30201-14

    Article  CAS  Google Scholar 

  • Langs G et al (2011) Detecting stable distributed patterns of brain activation using gini contrast. NeuroImage 56:497–507

    Article  PubMed  Google Scholar 

  • Li Y et al (2017) Stereoscopic processing of crossed and uncrossed disparities in the human visual cortex. BMC Neurosci 18:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu C et al (2018) Image categorization from functional magnetic resonance imaging using functional connectivity. J Neurosci Meth 309:71–80

    Article  Google Scholar 

  • Minini L et al (2010) Neural modulation by binocular disparity greatest in human dorsal visual stream. J Neurophysiol 104:169–178

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizraji E et al (2017) The feeling of understanding: an exploration with neural models. Cogn Neurodyn 11:135–146

    Article  PubMed  Google Scholar 

  • Naselaris T et al (2011) Encoding and decoding in fMRI. NeuroImage 56:400–410

    Article  PubMed  Google Scholar 

  • Neri P et al (2004) Stereoscopic processing of absolute and relative disparity in human visual cortex. J Neurophysiol 92:1880–1891

    Article  PubMed  Google Scholar 

  • Nienborg H et al (2006) Macaque V2 neurons, but not V1 neurons, show choice-related activity. J Neurosci 26:9567–9578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norman KA et al (2006) Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci 10:424–430

    Article  PubMed  Google Scholar 

  • Pantazatos SP et al (2012) Decoding unattended fearful faces with whole-brain correlations: an approach to identify condition-dependent large-scale functional connectivity. PLoS Comput Biol 8:e1002441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parhizi B et al (2018) Decoding the different states of visual attention using functional and effective connectivity features in fMRI data. Cogn Neurodyn 12:157–170

    Article  PubMed  Google Scholar 

  • Preston TJ et al (2008) Multivoxel pattern selectivity for perceptually relevant binocular disparities in the human brain. J Neurosci 28:11315–11327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richiardi J et al (2011) Decoding brain states from fMRI connectivity graphs. NeuroImage 56:616–626

    Article  PubMed  Google Scholar 

  • Shirer WR et al (2012) Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb Cortex 22:158–165

    Article  CAS  PubMed  Google Scholar 

  • Smith SM et al (2011) Network modelling methods for FMRI. NeuroImage 54:875–891

    Article  PubMed  Google Scholar 

  • Stevens WD et al (2015) Functional connectivity constrains the category-related organization of human ventral occipitotemporal cortex. Hum Brain Mapp 36:2187–2206

    Article  PubMed  PubMed Central  Google Scholar 

  • Tagliazucchi E et al (2012) Automatic sleep staging using fMRI functional connectivity data. NeuroImage 63:63–72

    Article  PubMed  Google Scholar 

  • Tozzi A et al (2017) From abstract topology to real thermodynamic brain activity. Cogn Neurodyn 11:283–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X et al (2016) Representing object categories by connections: evidence from a mutivariate connectivity pattern classification approach. Hum Brain Mapp 37:3685–3697

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamashita O et al (2008) Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns. NeuroImage 42:1414–1429

    Article  PubMed  Google Scholar 

  • Yan SM (1985) Digital stereoscopic test charts. People’s Medical Publishing House

  • Yang Z et al (2014) Common intrinsic connectivity states among posteromedial cortex subdivisions: insights from analysis of temporal dynamics. NeuroImage 93(Pt 1):124–137

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work of this paper is funded by the National Key Technologies R&D program (2017YFB1002502), and the project of Beijing Advanced Education Center for Future Education (BJAICFE2016IR-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiacai Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, Y., Song, S. et al. Decoding disparity categories in 3-dimensional images from fMRI data using functional connectivity patterns. Cogn Neurodyn 14, 169–179 (2020). https://doi.org/10.1007/s11571-019-09557-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-019-09557-6

Keywords

Navigation