Skip to main content

Advertisement

Log in

Relationships between short and fast brain timescales

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Brain electric activity exhibits two important features: oscillations with different timescales, characterized by diverse functional and psychological outcomes, and a temporal power law distribution. In order to further investigate the relationships between low- and high- frequency spikes in the brain, we used a variant of the Borsuk–Ulam theorem which states that, when we assess the nervous activity as embedded in a sphere equipped with a fractal dimension, we achieve two antipodal points with similar features (the slow and fast, scale-free oscillations). We demonstrate that slow and fast nervous oscillations mirror each other over time via a sinusoid relationship and provide, through the Bloch theorem from solid-state physics, the possible equation which links the two timescale activities. We show that, based on topological findings, nervous activities occurring in micro-levels are projected to single activities at meso- and macro-levels. This means that brain functions assessed at the higher scale of the whole brain necessarily display a counterpart in the lower ones, and vice versa. Our topological approach makes it possible to assess brain functions both based on entropy, and in the general terms of particle trajectories taking place on donut-like manifolds. Condensed brain activities might give rise to ideas and concepts by combination of different functional and anatomical levels. Furthermore, cognitive phenomena, as well as social activity can be described by the laws of quantum mechanics; memories and decisions exhibit holographic organization. In physics, the term duality refers to a case where two seemingly different systems turn out to be equivalent. This topological duality holds for all the types of spatio-temporal brain activities, independent of their inter- and intra-level relationships, strength, magnitude and boundaries, allowing us to connect the physiological manifestations of consciousness to the electric activities of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge UniversityPress, New York

    Book  Google Scholar 

  • Ahn J, Hogan N (2015) Improved assessment of orbital stability of rhythmic motion with noise. PLoS ONE 10(3):e0119596. doi:10.1371/journal.pone.0119596

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexander DM, Nikolaev AR, Jurica P, van Leeuwen C (2016) Global neuromagnetic cortical fields have non-zero velocity. PLoS ONE 11(3):E0148413. doi:10.1371/journal.pone.0148413

    Article  PubMed  PubMed Central  Google Scholar 

  • Atasoy S, Donnelly I, Pearson J (2016) Human brain networks function in connectome-specific harmonic waves. Nat Commun. doi:10.1038/ncomms10340

    PubMed  PubMed Central  Google Scholar 

  • Atmanspacher H, Rotter S (2008) Interpreting neurodynamics: concepts and facts. Cogn Neurodyn 2(4):297–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakouie F, Pishnamazi M, Zeraati R, Gharibzadeh S (2017) Scale-freeness of dominant and piecemeal perceptions during binocular rivalry. Cogn Neurodyn 11(4):319–326

    Article  PubMed  Google Scholar 

  • Barbey AK, Colom R, Grafman J (2014) Distributed neural system for emotionalintelligence revealed by lesion mapping. Soc Cogn Affect Neurosci 9(3):265–272

    Article  PubMed  Google Scholar 

  • Bastos AM, Briggs F, Alitto HJ, Mangun GR, Usrey WM (2014) Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for gamma-band oscillations. J Neurosci 34(22):7639–7644. doi:10.1523/JNEUROSCI.4216-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastos AM, Litvak V, Moran R, Bosman CA, Fries P, Friston KJ (2015) A DCM study of spectral asymmetries in feedforward and feedback connections between visual areas V1 and V4 in the monkey. Neuroimage 108:460–475. doi:10.1016/j.neuroimage.2014.12.081 (Epub 2015 Jan 10)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beggs JM, Timme N (2012) Being critical of criticality in the brain. Front Physiol 3:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Bethell EJ, Holmes A, MacLarnon A, Semple S (2012) Evidence that emotion mediatessocial attention in rhesus macaques. PLoS ONE 7(8):e44387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bliss T, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate areaof the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borsuk M (1933) Drei sätze über die n-dimensional euklidische sphäre. Fundam Math 1:177–190

    Article  Google Scholar 

  • Borsuk M (1958–1959) Concerning the classification of topological spaces from the standpoint of the theory of retracts. Fundam Math XLVI:177–190

  • Borsuk M (1969) Fundamental retracts and extensions of fundamental sequences. Fundam Math 1:55–85

    Article  Google Scholar 

  • Brembs B (2011) Towards a scientific concept of free will as a biological trait: spontaneous actionsand decision-making in invertebrates. Proc Biol sci R Soc 278(1707):930–939. doi:10.1098/rspb.2010.2325

    Article  Google Scholar 

  • Busemeyer JR, Bruza PD (2012) Quantum Models of cognition and decision. CambridgeUniversity Press, New York

    Book  Google Scholar 

  • Buzsáki G, Watson BO (2012) Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialog Clin Neurosci 4:345–367

    Google Scholar 

  • Buzsaki G, Logothetis N, Singer W (2013) Scaling brain size, keeping timing: evolutionarypreservation of brain rhythms. Neuron 80(4):751–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christoff K, Irving Z, Fox KC, Spreng RN, Andrews-Hanna JR (2016) Mind-wandering as spontaneous thought: a dynamic framework. Nat Neurosci Rev. doi:10.1038/nrn.2016.113

    Google Scholar 

  • Claussen JC, Hofmann UG (2012) Sleep, neuroengineering and dynamics. Cogn Neurodyn 6(3):211–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE (2014) Intrinsic and task-evoked network architectures of the human brain. Neuron 83(1):238–251. doi:10.1016/j.neuron.2014.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103(37):13848–13853 (Epub 2006 Aug 31)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Arcangelis L, Herrmann HJ (2010) Learning as a phenomenon occurring in a critical state. Proc Natl Acad Sci 107:3977–3981

    Article  PubMed  PubMed Central  Google Scholar 

  • Deaner RO, Isler K, Burkart J, Van Schaik C (2007) Overall brain size, and notencephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav Evol 70(2):115–124

    Article  PubMed  Google Scholar 

  • Deli E (2015) The science of consciousness how a new understanding of space and time infers the evolution of the mind. Self-Published Hungary, Hungary

    Google Scholar 

  • Deli E (2016) Consciousness, a cosmic phenomenon—a hypothesis. J Conscious Explor Res 7(11):910–930

    Google Scholar 

  • Fernandes de Lima VM, Pereira Junior A (2016) The plastic glial-synaptic dynamics within the neuropil: a self-organizing system composed of polyelectrolytes in phase transition. Neural Plast. doi:10.1155/2016/7192427

    PubMed  PubMed Central  Google Scholar 

  • Festinger L (1957) The theory of cognitive dissonance. Stanford University Press, Stanford

    Google Scholar 

  • Fingelkurts AA, Fingelkurts AA (2014) Present moment, past, and future: mental kaleidoscope. Front Psychol 5:395. doi:10.3389/fpsyeg.2014.00395

    Article  PubMed  PubMed Central  Google Scholar 

  • Floquet G (1883) Sur les quations différentielles linéaires à coefficients périodiques. Ann Sci l’É.N.S. 2e série, tom 12:47–88

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711

    Article  CAS  PubMed  Google Scholar 

  • Fraiman D, Chialvo DR (2012) What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations. Front Physiol 3:307. doi:10.3389/fphys.2012.00307

    Article  PubMed  PubMed Central  Google Scholar 

  • Fredrickson BL, Joiner T (2002) Positive emotions trigger upward spirals toward emotional well-being. J Am Psychol Soc 13(2):172–175

    Google Scholar 

  • Geesink HJH, Meijer DKF (2016) Quantum wave information of life revealed: an algorithm for electromagnetic frequencies that create stability of biological order, with implications for brain function and consciousness. NeuroQuantology. doi:10.14704/nq.2016.14.1.911

    Google Scholar 

  • Guterstam A, Abdulkarim Z, Ehrsson HH (2015) Illusory ownership of an invisible bodyreduces autonomic and subjective social anxiety responses. Sci Rep 5:9831. doi:10.1038/srep09831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He BJ (2014) Scale-free brain activity: past, present, and future. Trends Cogn Sci 18(9):480–487

    Article  PubMed  PubMed Central  Google Scholar 

  • He BJ, Zempel JM, Snyder AZ, Raichle ME (2010) The temporal structures and functional significance of scale-free brain activity. Neuron 66(3):353–369. doi:10.1016/j.neuron.2010.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavalali ET, Chung C, Khvotchev M, Leitz J, Nosyreva E, Raingo J, Ramirez DM (2011) Spontaneous neurotransmission: an independent pathway for neuronal signaling? Physiol (Bethesda) 26(1):45–53

    Article  CAS  Google Scholar 

  • Khrennikov A (2016) ‘Social Laser’: action amplification by stimulated emission of socialenergy. Philos Trans R Soc A 374(2058):20150094

    Article  Google Scholar 

  • Bliss CA, Kloumann, IM, Harris KD, Danforth CM, Dodds, PS (2012) Twitter reciprocalreply networks exhibit assortativity with respect to happiness pp 1–10 arXiv:1112.1010

  • Levy D (1994) Chaos theory and strategy: theory, applications, and managerial implications. Strateg Manag J 15:167–178

    Article  Google Scholar 

  • Libet B (1985) Unconscious cerebral initiative and the role of conscious will in voluntaryaction. Behav Brain Sci 8:529–566

    Article  Google Scholar 

  • Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ (2001) Long-range temporal correlations and scaling behavior in human brain oscillations. J Neurosci 21(4):1370–1377

    CAS  PubMed  Google Scholar 

  • Lipsitz LA, Goldberger AL (1992) Loss of “complexity” and aging: potential applications of fractals and chaos theory to senescence. JAMA 267:1806–1809

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Lee HJ, Weitz AJ, Fang Z, Lin P, Choy M, Lee JH (2015) Frequency selective control of cortical and subcortical networks by central thalamus. eLife 4:e09215

    PubMed  PubMed Central  Google Scholar 

  • Lupien SJ, Maheu F, Tu M, Fiocco A, Schramek TE (2007) The effects of stress and stresshormones on human cognition. Implications for the field of brain and cognition. Brain Cogn 65(3):209–237

    Article  CAS  PubMed  Google Scholar 

  • Mantini D, Vanduffel W (2013) Emerging roles of the brain’s default mode network. The Neuroscientist. 19(1):76–87

    Article  PubMed  Google Scholar 

  • Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G et al (2016) Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci. doi:10.1073/pnas.1608282113

    Google Scholar 

  • Matoušek J (2003) Using the Borsuk–Ulam theorem. lectures on topological methods in combinatorics and geometry. Springer, Berlin

    Google Scholar 

  • Mazzucato L, Fontanini A, La Camera G (2016) Stimuli reduce the dimensionality of cortical activity. Front Syst Neurosci. doi:10.3389/fnsys.2016.00011

    PubMed  PubMed Central  Google Scholar 

  • McNally L, Brown SP, Jackson AL (2012) Cooperation and the evolution of intelligence. Proc R Soc B Biol Sci (April). doi:10.1098/rspb.2012.0206

    Google Scholar 

  • Meijer DKF, Geesink HJH (2016) Phonon guided biology: architecture of life and conscious perception are mediated by toroidal coupling of phonon, photon and electron information fluxes at discrete eigenfrequencies. NeuroQuantology 14(4):718–755

    Article  Google Scholar 

  • Milstein J, Mormann F, Fried I, Koch C (2009) Neuronal shot noise and Brownian 1/f2 behavior in the local field potential. PLoS ONE 4(2):e4338. doi:10.1371/journal.pone.0004338

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreva EV, Brida G, Gramegna M, Giovannetti V, Maccone L, Genovese M (2013) Time from quantum entanglement: an experimental illustration. Phys Rev A 89:052122

    Article  Google Scholar 

  • Mota B, Herculano-Houzel S (2015) Cortical folding scales universally with surface area andthickness, not number of neurons. Science 3(6243):74–77

    Article  Google Scholar 

  • Neupert SD, Allaire JC (2012) I think I can, I think I can: examining the within-personcoupling of control beliefs and cognition in older adults. Psychol Aging 2(2):145–152

    Google Scholar 

  • Nikolov D, Oliveira DFM, Flammini A, Menczer F, Feb SI (2015) Measuring online social bubbles. Peer J Comput Sci. doi:10.7717/peerj-cs.38

    Google Scholar 

  • O‘Donnell C, Van Rossum MC (2014) Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise. Front Comput Neurosci 8:105. doi:10.3389/fncom.2014.00105

    PubMed  PubMed Central  Google Scholar 

  • Oei NYL, Rombouts SARB, Soeter RP, van Gerven JM, Both S (2012) Dopamine modulates reward system activity during subconscious processing of sexual stimuli. Neuropsychopharmacology 37:1729–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pakhomov A, Sudin N (2013) Thermodynamic view on decision-making process: emotions as a potential power vector of realization of the choice. Cogn Neurodyn 7(6):449–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Palma J, Grossberg S, Versace M (2012) Persistence and storage of activity patterns in spiking recurrent cortical networks: modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine. Front Comput Neurosci 6:42. doi:10.3389/fncom.2012.00042

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel J, Schomburg EW, Berényi A, Fujisawa S, Buzsáki G (2013) Local generation and propagation of ripples along the septotemporal axis of the hippocampus. J Neurosci 33(43):17029–17041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penttonen M, Buzsaki Gy (2003) Natural logarithmic relationship between brain oscillators. Thalamus Relat Syst 2(2):145–152

    Article  Google Scholar 

  • Pereira A (2017) Astroglial hydro-ionic waves guided by the extracellular matrix: an exploratory model. J Integr Neurosci 16(1):57–72

    Article  PubMed  Google Scholar 

  • Pereira A Jr, Foz FB, Rocha AF (2017) The dynamical signature of conscious processing: from modality-specific percepts to complex episodes. Psychol Conscious Theory Res Pract. doi:10.1037/cns0000115

    Google Scholar 

  • Perlmutter E (2016) Bounding the space of holographic CFTs with chaos. J High Energy Phys 2016:69

    Article  Google Scholar 

  • Peters JF (2016) Computational proximity. excursions in the topology of digital images, In: Peters JF (ed) pp 169–171. doi:10.1007/978-3-319-30262-1

  • Peters JF (2017) Foundations of computer vision. Computational geometry, visual image structures and object shape detection, intelligent systems reference library, vol 124. Springer, Berlin. doi:10.1007/978-3-319-52483-2

    Google Scholar 

  • Peters JF, Ramanna S, Tozzi A, İnan E (2017) Bold-independent computational entropy assesses functional donut-like structures in brain fMRI images. Front Hum Neurosci 11:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Pigarev IN, Pigareva ML (2015) The state of sleep and the current brain paradigm. Front Syst Neurosci 9:139. doi:10.3389/fnsys.2015.00139

    Article  PubMed  PubMed Central  Google Scholar 

  • Pothos EM, Busemeyer JR (2009) A quantum probability model explanation for violationsof ‘l’ derationacision theory. Proc R Soc B 276(1665):2171–2178

    Article  PubMed  PubMed Central  Google Scholar 

  • Pothos EM, Busemeyer JR (2013) Can quantum probability provide a new direction forcognitive modeling? Behav Brain Sci 36(03):255–274

    Article  PubMed  Google Scholar 

  • Poutanen P, Soliman W, Ståhle P (2016) The complexity of innovation: an assessment and review of the complexity perspective. Eur J Innov Manag 19(2):189–213

    Article  Google Scholar 

  • Pritchard WS (1992) The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram. Int J Neurosci 66:119–129

    Article  CAS  PubMed  Google Scholar 

  • Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of anevolving idea. NeuroImage 37(4):1083–1090

    Article  PubMed  Google Scholar 

  • Rudd M, Aaker J, Vohs K (2012) Awe expands people’s perception of time, alters decisionmaking, and enhances well-being. Psychol Sci 23(10):1130–1136

    Article  PubMed  Google Scholar 

  • Schultz W (2007) Reward signals. Scholarpedia 2(6):2184

    Article  Google Scholar 

  • Sengupta B, Stemmler MB (2014) Power consumption during neuronal computation. Proc IEEE 102:738–750

    Article  Google Scholar 

  • Seo D, Patrick CJ, Kennealy PJ (2008) Role of serotonin and dopamine systeminteractions in the neurobiology of impulsive aggression and its comorbidity with other clinical disorders. Aggress Violent Behav 13(5):383–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Touboul J (2012) Mean-field equations for stochastic firing-rate neural fields with delays: derivation and noise-induced transitions. Phys D Nonlinear Phenom 241(15):1223–1244

    Article  Google Scholar 

  • Touroutoglou A, Lindquist KA, Dickerson BC, Barrett LF (2015) Intrinsicconnectivity in the human brain does not reveal networks for “basic” emotions. Soc Cogn Affect Neurosci 10(9):1257–1265

    Article  PubMed  PubMed Central  Google Scholar 

  • Tozzi A, Peters JF (2016a) Towards a fourth spatial dimension of brain activity. Cogn Neurodyn 10(3):189–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Tozzi A, Peters JF (2016b) A topological approach unveils system invariances and broken symmetries in the brain. J Neurosci Res 94(5):351–365

    Article  CAS  PubMed  Google Scholar 

  • Tozzi A, Peters JF (2017) The multidimensional world. Lambert Academic Publishing, Saarbrücken. ISBN-13: 978-3-330-03530-0

  • Tozzi A, Zare M, Benasich AA (2016) New perspectives on spontaneous brain activity: dynamic networks and energy matter. Front Hum Neurosci 10:247. doi:10.3389/fnhum.2016.00247

    Article  PubMed  PubMed Central  Google Scholar 

  • Tozzi A, Peters JF, Fingelkurts AA, Fingelkurts AA, Marijuán PC (2017a) Topodynamics of metastable brains. Phys Life Rev. doi:10.1016/j.plrev.2017.03.001

    Google Scholar 

  • Tozzi A, Peters JF, Jausovec N (2017b) A repetitive modular oscillation underlies human brain electric activity. Neurosci Lett. doi:10.1016/j.neulet.2017.05.051

    Google Scholar 

  • Traversa FL, Di Ventra M, Bonani F (2013) Generalized Floquet theory: application to dynamical systems with memory and Bloch’s theorem for nonlocal potentials. Phys Rev Lett 110(17):170602

    Article  PubMed  Google Scholar 

  • Treadway MT, Buckholtz JW, Cowan RL, Woodward ND, Li R, Ansari MS, Zald DH (2012) Dopaminergic mechanisms of individual differences in human effort -based decisionmaking. J Neurosci 32(18):6170–6176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Ville D, Britz J, Michel CM (2010) EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. PNAS 107(42):18179–18184. doi:10.1073/pnas.1007841107

    Article  PubMed  Google Scholar 

  • Van Essen DC (2005) A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28:635–666

    Article  PubMed  Google Scholar 

  • Ventriglia F (2014) Random dispersion in excitatory synapse response. Cogn Neurodyn 8(4):327–334

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Solloway T, Shiffrin RM, Busemeyer JR (2014) Context effects produced by question orders reveal quantum nature of human judgments. PNAS 111(26):9431–9436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Hirose S, Wada H, Imai Y, Machida T, Shirouzu I, Konishi S, Miyashita Y, Masuda N (2014) Energy landscapes of resting-state brain networks. Front Neuroinform 25(8):12

    Google Scholar 

  • Weeks JR (2002) The shape of space, 2nd edn. Marcel Dekker inc, New York-Basel

    Google Scholar 

  • Yamada Y, Kawabe T (2011) Emotion colors time perception unconsciously. Conscious Cogn 20(4):1–7

    Article  Google Scholar 

  • Zeeman EC (1976) Catastrophe theory. Sci Am, 234(4):65–70, 75–83

  • Zhang J, Hess PW, Kyprianidis A, Becker P et al (2016) Observation of a discrete time crystal. arXiv:1609.08684

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Tozzi.

Appendix: Bloch waves and Floquet theorem

Appendix: Bloch waves and Floquet theorem

The Bloch theorem states that, if you multiply a plane wave by a periodic function, you obtain a Bloch wave, which expresses the energy eigenstates for a particle in a lattice, written as ψn k , where n is a discrete index.

There are different Bloch waves with the same k, each one with a different periodic component u. Further, the same Bloch wave can be built in different ways, involving different vectors k and different periodic functions u. However, if we take into account just the first Brillouin zone of our lattice, we obtain that every Bloch state has a unique k.

The concept of Bloch theorem from solid-state physics—a second order differential equation-is about crystals in any number of spatial dimensions and deals in particular with the Schrödinger equation. However, it can be also applied in theory of ordinary differential equations, through the Floquet theorem (Floquet 1883). Indeed, the two theorems are almost equivalent (Floquet). The Floquet theorem, through a coordinate change in the lattice, transforms the original periodic system into a more manageable traditional linear system with constant, real coefficients. In other words, we map a fundamental matrix solution into a matrix function depending on the time, giving rise to a time-dependent change of coordinates. The Floquet theorem holds for any homogeneous, linear system of first order differential equations with a periodic coefficient matrix. Through a coordinate change in the lattice, the Floquet’s theorem transforms the periodic system into a traditional linear system with constant, real coefficients.

We start from a linear first order differential equation:

$$\frac{{d\left( {x(t)} \right)}}{dt} = A\left( t \right)x,$$

where x(t) is a column vector of length n, and A(t) is an n × n periodic matrix with period T.Then, for all t ∊ R:

$$\varPhi \left( {t + T} \right) = \varPhi \left( t \right)\varPhi^{ - 1} \left( 0 \right)\varPhi \left( T \right),$$

where Φ(t) is a fundamental matrix solution of the above differential equation \({{d\left( {x(t)} \right)}}\div{dt} = A\left( t \right)x\), and Φ −1(0) Φ(T) is the monodromy matrix. Now consider the n × n matrices: B, P, Q, R: For each matrix B such that:

$$E^{TB} = \varPhi^{ - 1} \left( 0 \right)\varPhi \left( T \right),$$

there is a periodic (period T) matrix function t → P(t) such that:Φ(t) = P(t)E tB for all t∊ R. This representation is the Floquet normal form for the fundamental matrix Φ(t).

There is also a real matrix R and a real periodic function (period −2T) matrix function t → Q(t),  which is continuous and periodic—such that:

$$\varPhi \left( t \right) = Q\left( t \right)E^{tR} \, \quad {\text{for all }}t \in R.$$

The latter mapping gives rise to a time-dependent change of coordinates:

$$y = Q^{ - 1} \left( t \right)x,$$

under which the original system becomes a linear system with real constant coefficients y = Ry. The mapping of a fundamental matrix solution for such a differential equation into a (time-dependent) matrix function gives rise to a time-dependent change of coordinates, under which the original periodic system becomes a linear system with real constant coefficients y = Ry.

The eigenvalues of e TB are called the characteristic multipliers of the system, while the characteristic exponent, called the Floquet exponent, is a complex μ such that e μT is a characteristic multiplier of the system. Floquet exponents are not unique and their real parts correspond to the Lyapunov exponents.

The linear differential equations with periodic coefficients have been widely used in many scientific fields. In particular, they provide a versatile tool for the stability analysis of physical systems equipped with a periodic steady-state and infinite memory, such as Brownian particles and circuit resonators (Traversa et al. 2013). The Floquet multipliers have been also used to assess the stability of periodic motion in natural rhythmic - movements in humans and machines-, not just in linear systems, but also in stochastic noise and in limit-cycle, nonlinear oscillators (Ahn and Hogan 2015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Déli, E., Tozzi, A. & Peters, J.F. Relationships between short and fast brain timescales. Cogn Neurodyn 11, 539–552 (2017). https://doi.org/10.1007/s11571-017-9450-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-017-9450-4

Keywords

Navigation