Skip to main content
Log in

Decoding the different states of visual attention using functional and effective connectivity features in fMRI data

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

The present paper concentrates on the impact of visual attention task on structure of the brain functional and effective connectivity networks using coherence and Granger causality methods. Since most studies used correlation method and resting-state functional connectivity, the task-based approach was selected for this experiment to boost our knowledge of spatial and feature-based attention. In the present study, the whole brain was divided into 82 sub-regions based on Brodmann areas. The coherence and Granger causality were applied to construct functional and effective connectivity matrices. These matrices were converted into graphs using a threshold, and the graph theory measures were calculated from it including degree and characteristic path length. Visual attention was found to reveal more information during the spatial-based task. The degree was higher while performing a spatial-based task, whereas characteristic path length was lower in the spatial-based task in both functional and effective connectivity. Primary and secondary visual cortex (17 and 18 Brodmann areas) were highly connected to parietal and prefrontal cortex while doing visual attention task. Whole brain connectivity was also calculated in both functional and effective connectivity. Our results reveal that Brodmann areas of 17, 18, 19, 46, 3 and 4 had a significant role proving that somatosensory, parietal and prefrontal regions along with visual cortex were highly connected to other parts of the cortex during the visual attention task. Characteristic path length results indicated an increase in functional connectivity and more functional integration in spatial-based attention compared with feature-based attention. The results of this work can provide useful information about the mechanism of visual attention at the network level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Bar M (2003) A cortical mechanism for triggering top-down facilitation in visual object recognition. J Cogn Neurosci 15(4):600–609

    Article  PubMed  Google Scholar 

  • Battelli L, Cavanagh P, Martini P, Barton JJS (2003) Bilateral deficits of transient visual attention in right parietal patients. Brain 126(10):2164–2174

    Article  PubMed  Google Scholar 

  • Battelli L, Pascual-Leone A, Cavanagh P (2007) The “when” pathway of the right parietal lobe. Trends Cogn Sci 11(5):204–210

    Article  PubMed  PubMed Central  Google Scholar 

  • Behroozi M, Daliri MR (2012) Software tools for the analysis of functional magnetic resonance imaging. Basic Clin Neurosci 3:71–83

    Google Scholar 

  • Behroozi M, Daliri MR (2014a) RDLPFC area of the brain encodes sentence polarity: a study using fMRI. Brain Imaging Behav 9:178–189

    Article  Google Scholar 

  • Behroozi M, Daliri MR (2014b) Predicting brain states associated with object categories from fMRI data. J Integr Neurosci 13:645–667

    Article  PubMed  Google Scholar 

  • Behroozi M, Daliri MR, Boyaci H (2011) Statistical analysis methods for the fMRI data. Basic Clin Neurosci 2:67–74

    Google Scholar 

  • Berberovic N, Pisella L, Morris AP, Mattingley JB (2004) Prismatic adaptation reduces biased temporal order judgements in spatial neglect. NeuroReport 15(7):1199–1204

    Article  PubMed  Google Scholar 

  • Bhattacharya J, Petsche H (2005) Phase synchrony analysis of EEG during music perception reveals changes in functional connectivity due to musical expertise. Signal Process 85:2161–2177

    Article  Google Scholar 

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2005) structure and dynamics. Phys Rep 424:175–308

    Article  Google Scholar 

  • Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD (2001) Conflict monitoring and cognitive control. Psychol Rev 108(3):624–652

    Article  CAS  PubMed  Google Scholar 

  • Brefczynski JA, DeYoe EA (1999) A physiological correlate of the ‘spotlight’ of visual attention. Nat Neurosci 2(4):370–374

    Article  CAS  PubMed  Google Scholar 

  • Brillinger DR (2001) Time series: data analysis and theory. Society for Industrial and Applied Mathematics, Philadephia

    Book  Google Scholar 

  • Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler S (2004) Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc Natl Acad Sci 101(26):9849–9854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckner LR (2010) Human functional connectivity: new tools, unresolved questions. Proc Natl Acad Sci 107(24):10769–10770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  PubMed  Google Scholar 

  • Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4(6):215–222

    Article  CAS  PubMed  Google Scholar 

  • Carrasco M (2011) Visual attention: the past 25 years. Vis Res 51(13):1484–1525

    Article  PubMed  PubMed Central  Google Scholar 

  • Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA (1998) A common network of functional areas for attention and eye movements. Neuron 21(4):761–773

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL (2000) Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci 3(3):292–297

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Kincade MJ, Lewis C, Snyder AZ, Sapir A (2005) Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci 8(11):1603–1610

    Article  CAS  PubMed  Google Scholar 

  • Corchs S, Deco G (2004) Feature-based attention in human visual cortex: simulation of fMRI data. NeuroImage 21:36–45

    Article  PubMed  Google Scholar 

  • Cornelis JS, Jaap CR (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1:3

    Article  Google Scholar 

  • Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18(18):7426–7435

    CAS  PubMed  Google Scholar 

  • Daliri MR, Kozyrev V, Treue S (2016) Attention enhances stimulus representations in macaque visual cortex without affecting their signal-to-noise level. Sci Rep 6:27666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis B, Christie J, Rorden C (2009) Temporal order judgments activate temporal parietal junction. J Neurosci 29(10):3182–3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decaix C, Chokron S, Bartolomeo P, Sieroff E (2001) Modulating the attentional bias in unilateral neglect: the effects of the strategic set. Exp Brain Res 137(3-4):432–444

    Article  PubMed  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222

    Article  CAS  PubMed  Google Scholar 

  • Dimitriadis SI, Salis C, Tarnanas I, Linden DE (2017) Topological filtering of dynamic functional brain networks unfolds informative chronnectomics: a novel data-driven thresholding scheme based on orthogonal minimal spanning trees (OMSTs). Front Neuroinform 11:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA et al (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci 104(26):11073–11078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan J (1980) The locus of interference in the perception of simultaneous stimuli. Psychol Rev 87:272–300

    Article  CAS  PubMed  Google Scholar 

  • Duncan J, Humphreys GW (1989) Visual search and stimulus similarity. Psychol Rev 96:433–458

    Article  CAS  PubMed  Google Scholar 

  • Fagiolo G (2007) Clustering in complex directed networks. Phys Rev E Stat Nonlin Soft Matter Phys 76:026107

    Article  PubMed  Google Scholar 

  • Fenske MJ, Aminoff E, Gronau N, Bar M (2006) Top-down facilitation of visual object recognition: object-based and context-based contributions. Prog Brain Res 155:3–21

    Article  PubMed  Google Scholar 

  • Gandhi SP, Heeger DJ, Boynton GM (1999) Spatial attention affects brain activity in human primary visual cortex. Proc Natl Acad Sci 96(6):3314–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geweke J (1982) Measurement of linear dependence and feedback between multiple time series. J Am Stat Assoc 77(378):304–313

    Article  Google Scholar 

  • Gharabaghi A, Fruhmann M, Tatagiba M, Karnath HO (2006) The role of the right superior temporal gyrus in visual search-insights from intraoperative electrical stimulation. Neuropsychologia 44(12):2578–2581

    Article  PubMed  Google Scholar 

  • Gramann K, Töllner T, Müller HJ (2010) Dimension-based attention modulates early visual processing. Psychophysiology 47(5):968–978

    PubMed  Google Scholar 

  • Granger C (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438

    Article  Google Scholar 

  • Hahn B, Ross TJ, Stein EA (2006) Neuroanatomical dissociation between bottom-up and top-down processes of visuospatial selective attention. Neuroimage 32(2):842–853

    Article  PubMed  PubMed Central  Google Scholar 

  • Jehee JFM, Brady DK, Tong F (2011) Attention improves encoding of task-relevant features in the human visual cortex. J Neurosci 31:8210–8219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamitani Y, Tong F (2005) Decoding the visual and subjective contents of the human brain. Nat Neurosci 8:679–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamitani Y, Tong F (2006) Decoding seen and attended motion directions from activity in the human visual cortex. NCBI 16(11):1096–1102

    CAS  Google Scholar 

  • Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341

    Article  CAS  PubMed  Google Scholar 

  • Kastner S, Pinsk MA, De WP, Desimone R, Ungerleider LG (1999) Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22(4):751–761

    Article  CAS  PubMed  Google Scholar 

  • Kimchi R, Behrmann M, Olson CR (2003) Perceptual organization in vision: behavioral and neural perspectives. Psychology Press, Hove

    Google Scholar 

  • Latora V, Marchiori M (2003) Economic small-world behavior in weighted networks. Eur Phys J B 32:249–263

    Article  CAS  Google Scholar 

  • Lawrence NS, Ross TJ, Hoffmann R, Garavan H, Stein EA (2003) Multiple neuronal networks mediate sustained attention. J Cogn Neurosci 15(7):1028–1038

    Article  PubMed  Google Scholar 

  • Liao W, Ding J, Marinazzo D, Xu Q, Wang Z, Yuan C, Zhang Z, Lu G, Chen H (2011) Smallworld directed networks in the human brain: multivariate Granger causality analysis of resting-state fMRI. NeuroImage 54:2683–2694

    Article  PubMed  Google Scholar 

  • Ling S, Pratte MS, Tong F (2015) Attention alters orientation processing in the human lateral geniculate nucleus. Nat Neurosci 18:496–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Sperling G (2001) Three-systems theory of human visual motion perception: review and update. J Opt Soc Am 18(9):2331–2370

    Article  CAS  Google Scholar 

  • Luck SJ, Hillyard SA, Mouloua M, Hawkins HL (1996) Mechanisms of visual-spatial attention: resource allocation or uncertainty reduction. J Exp Psychol Hum Percept Perform 22(3):725–737

    Article  CAS  PubMed  Google Scholar 

  • Marchini JL, Ripley BD (2000) A new statistical approach to detecting significant activation in functional MRI. NeuroImage 12:366–380

    Article  CAS  PubMed  Google Scholar 

  • Mechelli A, Price CJ, Friston KJ, Ishai A (2004) Where bottom-up meets top-down: neuronal interactions during perception and imagery. Cereb Cortex 14(11):1256–1265

    Article  PubMed  Google Scholar 

  • Müller HJ, Heller D, Ziegler J (1995) Visual search for singleton feature targets within and across feature dimensions. Percept Psychophys 57(1):1–17

    Article  PubMed  Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256

    Article  Google Scholar 

  • Peelen MV, Kastner S (2011) A neural basis for real-world visual search in human occipitotemporal cortex. Proc Natl Acad Sci 108(29):12125–12130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ploran EJ, Nelson SM, Velanova K, Donaldson DI, Petersen SE, Wheeler ME (2007) Evidence accumulation and the moment of recognition: dissociating perceptual recognition processes using fMRI. J Neurosci 27(44):11912–11924

    Article  CAS  PubMed  Google Scholar 

  • Poppel E (1997) A hierarchical model of temporal perception. Trends Cogn Sci 1(2):56–61

    Article  CAS  PubMed  Google Scholar 

  • Posner MI, Petersen SE (1990) The attention system of the human brain. NCBI 13:25–42

    CAS  Google Scholar 

  • Robertson IH, Mattingley JB, Rorden C, Driver J (1998) Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature 395(6698):169–172

    Article  CAS  PubMed  Google Scholar 

  • Rosen AC, Rao SM, Caffarra P, Scaglioni A, Bobholz JA, Woodley SJ et al (1999) Neural basis of endogenous and exogenous spatial orienting. A functional MRI study. J Cogn Neurosci 11(2):135–152

    Article  CAS  PubMed  Google Scholar 

  • Schwartz G (1978) Estimating the dimension of a model. Ann Stat 5(2):461–464

    Article  Google Scholar 

  • Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seif Z, Daliri MR (2015) Evaluation of local field potential signals in decoding of visual attention. Cogn Neurodyn 9(5):509–522

    Article  PubMed  PubMed Central  Google Scholar 

  • Seth AK (2010) A MATLAB toolbox for Granger causal connectivity analysis. J Neurosci Methods 186:262–273

    Article  PubMed  Google Scholar 

  • Shulman GL, Pope DLW, Astafiev SV, McAvoy MP, Snyder AZ, Corbetta M (2010) Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network. J Neurosci 30(10):3640–3651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sporns O, Honey CJ (2006) Small worlds inside big brains. Proc Natl Acad Sci 103:19219–19220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summerfield C, Egner T, Greene M, Koechlin E, Mangels J, Hirsch J (2006) Predictive codes for forthcoming perception in the frontal cortex. Science 314(5803):1311–1314

    Article  CAS  PubMed  Google Scholar 

  • Verstraten FA, Cavanagh P, Labianca AT (2000) Limits of attentive tracking reveal temporal properties of attention. Vis Res 40(26):3651–3664

    Article  CAS  PubMed  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  • Wiener N (1956) The theory of prediction. In: Beckenbach EF (ed) Modern mathematics for engineers. McGraw-Hill, New York

    Google Scholar 

  • Wolfe JM, Horowitz TS (2004) What attributes guide the deployment of visual attention and how do they do it? Nat Rev Neurosci 5(6):495–501

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the team (especially Prof. Boyaci) from UMRAM laboratory, Bilkent University, Ankara, Turkey, for providing the infrastructure for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Daliri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parhizi, B., Daliri, M.R. & Behroozi, M. Decoding the different states of visual attention using functional and effective connectivity features in fMRI data. Cogn Neurodyn 12, 157–170 (2018). https://doi.org/10.1007/s11571-017-9461-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-017-9461-1

Keywords

Navigation