Skip to main content

Advertisement

Log in

Classification of epileptic seizures using wavelet packet log energy and norm entropies with recurrent Elman neural network classifier

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Electroencephalogram shortly termed as EEG is considered as the fundamental segment for the assessment of the neural activities in the brain. In cognitive neuroscience domain, EEG-based assessment method is found to be superior due to its non-invasive ability to detect deep brain structure while exhibiting superior spatial resolutions. Especially for studying the neurodynamic behavior of epileptic seizures, EEG recordings reflect the neuronal activity of the brain and thus provide required clinical diagnostic information for the neurologist. This specific proposed study makes use of wavelet packet based log and norm entropies with a recurrent Elman neural network (REN) for the automated detection of epileptic seizures. Three conditions, normal, pre-ictal and epileptic EEG recordings were considered for the proposed study. An adaptive Weiner filter was initially applied to remove the power line noise of 50 Hz from raw EEG recordings. Raw EEGs were segmented into 1 s patterns to ensure stationarity of the signal. Then wavelet packet using Haar wavelet with a five level decomposition was introduced and two entropies, log and norm were estimated and were applied to REN classifier to perform binary classification. The non-linear Wilcoxon statistical test was applied to observe the variation in the features under these conditions. The effect of log energy entropy (without wavelets) was also studied. It was found from the simulation results that the wavelet packet log entropy with REN classifier yielded a classification accuracy of 99.70 % for normal-pre-ictal, 99.70 % for normal-epileptic and 99.85 % for pre-ictal-epileptic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abualsaud K, Massudi M, Saleh M, Mohamed A (2015) Ensemble classifier for epileptic seizure detection for imperfect EEG data. Sci World J. doi:10.1155/2015/945689

    Google Scholar 

  • Acharya UR, Molinari F, Vinitha SS, Chattopadhyay S, Kwan-Hoong N, Suri JS (2012a) Automated diagnosis of epileptic EEG using entropies. Biomed Signal Process Control 7(4):401–408. doi:10.1016/j.bspc.2011.07.007

    Article  Google Scholar 

  • Acharya UR, Alvin AP, Sree SV, Yanti R, Suri JS (2012b) Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int J Neural Syst 22(2):1250002

    Article  PubMed  Google Scholar 

  • Acharya UR, Sree SV, Suri JS, Alvin AP (2012c) Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Exp system Appl 10(39):9072–9078

    Article  Google Scholar 

  • Adeli H, Zhou Z, Dadmehr N (2003) Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods 123(1):69–87. doi:10.1016/S0165-0270(02)00340-0

    Article  PubMed  Google Scholar 

  • Alotaiby N, El-Samie EA, Alshebeili SA, Aljibreen KH, Alkhanen E (2015) Seizure detection with common spatial pattern and support vector machines. In: Proceedings of information and communication technology research, 52–155. doi:10.1109/ICTRC.2015.7156444

  • Andrzejak RG (2001) Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E. doi:10.1103/PhysRevE.64.061907

  • Aydin S, Saraoglu HM, Kara S (2009) Log energy entropy-based EEG classification with multilayer neural networks in seizure. Ann Biomed Eng 37(12):2626–2630. doi:10.1007/s10439-009-9795-x

    Article  PubMed  Google Scholar 

  • Bajaj V, Pachori RB (2013) Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals. Biomed Eng Lett 3:17–21. doi:10.1007/s13534-013-0084-0

    Article  Google Scholar 

  • Chaurasiya RK, Jain K, Goutam S, Manisha (2015) Epileptic seizure detection using HHT and SVM. In: Proceedings of international conference electrical electronics signals communication and optimization, pp 1–6. doi:10.1109/EESCO.2015.7253660

  • Coifman R, Meyer Y, Quake S, Wickerhauser MV (1990) Signal processing and compression with wavelet packets. J Byres, Wavelets and their applications. Springer, Netherland, pp 363–379

    Google Scholar 

  • Das AB, Bhuiyan MH (2016) Discrimination and classification of focal and non-focal EEG signals using entropy based features in the EMD-DWT domain. Biomed Signal Process Control 29:11–21

    Article  Google Scholar 

  • Du M, Li J, Wang R (2016) The influence of potassium concentration on epileptic seizures in a coupled neuronal model in the hippocampus. Cogn Neurodyn 10(5):405–414

  • Elman JL (1990) Finding structure in time. Cognit Sci 14:179–211

    Article  Google Scholar 

  • Faust O, Acharya UR, Adeli H (2015) Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure 26:56–64

    Article  PubMed  Google Scholar 

  • Fisher RS, Boas EW, Blume W, Elger C (2005) Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE). Epilepsia 46(4):470–472

    Article  PubMed  Google Scholar 

  • Gajic D, Zeljko D, Stefano DG, Fredrik G (2014) Classification of EEG signals for detection of epileptic seizure based on wavelet and statistical pattern recognition. Biomed Eng Appl Basis Commun 26(2):1450021

    Article  Google Scholar 

  • Gao J, Hu J, Tung W (2011) Complexity measures of brain wave dynamics. Cogn Neurodyn 5(2):171–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Gopan GK, Sinha N, Babu DJ (2015) Statistical features based epileptic seizure EEG detection—an efficacy evaluation. In: Proceedings of advances in computing, communications and informatics (ICACCI), pp 1394–1398. doi:10.1109/ICACCI.2015.7275808

  • Gotman J (1982) Automatic recognition of epileptic seizures in the EEG. Electroencephalogr Clin Neurophysiol 99:530–540

    Article  Google Scholar 

  • Gotman J, Deng L (1991) State-dependent spike detection: concepts and preliminary results. Electroencephalogr Clin Neurophysiol 70:11–19

    Article  Google Scholar 

  • Guo L, Riveero D, Pazos A (2010) Epileptic seizure detection using multi wavelet transform based approximate entropy and artificial neural networks. J Neurosci Methods 193:156–163. doi:10.1016/j.jneumeth.2010.08.030

    Article  PubMed  Google Scholar 

  • Han CX, Deng J, Yi GS, Che YQ (2013) Investigation of EEG abnormalities in the early stage of Parkinson’s disease. Cogn Neurodyn 7(4):351–359. doi:10.1007/s11571-013-9247-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Haykin SS (1996) Adaptive filter theory, 3rd edn. Upper Saddle River, Prentic Hall

    Google Scholar 

  • Kelly KM, Shiau DS, Kern RT et al (2010) Assessment of a scalp EEG-based automated seizure detection system. Clin Neurophysiol 121(11):1832–1843. doi:10.1016/j.clinph.2010.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koren J, Herta J, Draschtak S (2015) Prediction of rhythmic and periodic EEG patterns and seizures on continuous EEG with early epileptiform discharges. Epilepsy Behav 49:286–289. doi:10.1016/j.yebeh.2015.04.044

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Dewal ML, Anand RS (2014) Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. SIViP 8:1323–1334. doi:10.1007/s11760-012-0362-9

    Article  Google Scholar 

  • Kumar TS, Kanhangad V, Pachori RB (2015) Classification of seizure and seizure-free EEG signals using local binary patterns. Biomed Sig Proc Control 15:33–40. doi:10.1016/j.bspc.2014.08.014

    Article  Google Scholar 

  • Mallat S (1989) A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Pattern Anal Mach Intell 11(7):674–693. doi:10.1109/34.192463

    Article  Google Scholar 

  • Natwong B, Sooraksa P, Pintavirooj C, Bunluechokchai S, Ussawawongaraya W (2006) Wavelet entropy analysis of the high resolution ECG. In: Proceedings of IEEE industrial electronics and applications, Singapore, pp 1–4

  • Ocak H (2009) Automatic detection of epileptic seizure in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl 36(2):2027–2036. doi:10.1016/j.eswa.2007.12.065

    Article  Google Scholar 

  • Panda R, Khobragade PS, Jambhule PD, Jengthe S, Pal PR, Gandhi TK (2010) Classification of EEG signal using wavelet transform and support vector machine for epileptic seizure detection. In: Proceedings of systems in medicine and biology (ICSMB), 405–408. doi:10.1109/ICSMB.2010.5735413

  • Pippa E, Zacharaki IE, Mporas I, Vasiliki T et al (2016) Improving classification of epileptic and non-epileptic EEG events by feature selection. Neurocomputing 171:576–585. doi:10.1016/j.neucom.2015.06.071

    Article  Google Scholar 

  • Pravin SK, Sriraam N, Benakop PG, Jinaga BC (2010) Entropies based detection of epileptic seizures with artificial neural network classifiers. Expert Syst Appl 37:3284–3291. doi:10.1016/j.eswa.2009.09.051

    Article  Google Scholar 

  • Raghu S, Sriraam N, Pradeep KG (2015) Effect of wavelet packet log energy entropy on electroencephalogram (EEG) signals. Int J Biomed Clin Eng 4(1):32–43

    Article  Google Scholar 

  • Samiee K, Kovacs P, Gabbouj M (2015) Epileptic seizure classification of EEG time-series using rational discrete short-time Fourier transform. IEEE Trans Biomed Eng 62(2):541–552. doi:10.1109/TBME.2014.2360101

    Article  PubMed  Google Scholar 

  • Selik M, Baraniuk R, Blair A (2001) Signal energy versus signal power. Openstack-CNX Module: m10055, http://cnx.rice.edu/content/m10055/2.4

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Srinivasan V, Eswaran C, Sriraam N (2007) Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans Inf Technol Biomed 11(3):288–295. doi:10.1109/TITB.2006.884369

    Article  PubMed  Google Scholar 

  • Sriraam N (2012) EEG based automated detection of auditory loss: a pilot study. Expert Syst Appl 39(1):723–731. doi:10.1016/j.eswa.2011.07.064

    Article  Google Scholar 

  • Sriraam N (2013) EEG based thought translator: a BCI model for paraplegic patients. Int J Biomed Clin Eng 2(1):50–62

    Article  Google Scholar 

  • Sriraam N, Eswaran C (2008) An adaptive error modeling scheme for the lossless compression of EEG signals. IEEE Trans Inf Technol Biomed 12(5):587–594

    Article  CAS  PubMed  Google Scholar 

  • Sriraam N, Shyamsunder R (2011) 3-D medical image compression using 3-D wavelet coders. Digit Signal Proc 21:100–109

    Article  Google Scholar 

  • Tan L, Jiang J (2008) Digital signal processing, fundamentals and applications, 2nd edn. Academic Press, New York

    Google Scholar 

  • Tang Z, Li R (2011) An improved neural network model and its applications. J Inf Comput Sci 8(10):1881–1888

    Google Scholar 

  • Tzallas AT, Tsipouras MG, Fotiadis DI (2007) Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput Intell Neurosci 2007:80510. doi:10.1155/2007/80510

    Article  PubMed Central  Google Scholar 

  • Venkataraman V, Vlachos I, Faith A, Krishnan B (2014) Brain dynamics based automated epileptic seizure detection. doi:10.1109/EMBC.2014.6943748

  • Wang C, Zou J, Zhang J (2010) Feature extraction and recognition of epileptiform activity in EEG by combining PCA with ApEn. Cognit Neurodyn 4(3):233–240

    Article  Google Scholar 

  • Wang D, Miao D, Xie C (2011) Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst Appl 38(11):14314–14320. doi:10.1016/j.eswa.2011.05.096

    Google Scholar 

  • Wang S, Chaovalitwongse WA, Wong S (2013) Online seizure prediction using an adaptive learning approach. IEEE Trans Knowl Data Eng 25(12):2854–2866. doi:10.1109/TKDE.2013.151

    Article  Google Scholar 

  • Xiang J, Ci L, Li H, Cao R, Wang B, Han X, Chen J (2015) The detection of epileptic seizure signals based on fuzzy entropy. J Neurosci 243:18–25. doi:10.1016/j.jneumeth.2015.01.015

    Google Scholar 

  • Yang BH, Yan GZ, Yan RG, Wu T (2006) Feature extraction of EEG-based brain computer interface by wavelet packet best basis decomposition. J Neural Eng 3(4):251–256

    Article  PubMed  Google Scholar 

  • Zeng K, Jiaqing Y, Yinghua W (2016) Automatic detection of absence seizures with compressive sensing EEG. Neurocomputing 171:497–502. doi:10.1016/j.neucom.2015.06.076

    Article  Google Scholar 

  • Zhou W, Liu Y, Yuan Q, Li X (2013) Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG. IEEE Trans Biomed Eng 60(12):3375–3381. doi:10.1109/TBME.2013.2254486

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. R.G. Andrzejak of University of Bonn, Germany, for providing permission to use the EEG data available in the public domain. The authors would like to thank Dr. A.S. Hegde, Centre for Neuro Science, M.S. Ramaiah Memorial Hospital, Bangalore, India for the useful discussion. The authors would also like to thank the anonymous reviewers for their helpful comments and suggestions that greatly improved the quality and clarity of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sriraam.

Ethics declarations

Conflict of interest

There is no conflict of interest involved in the proposed study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghu, S., Sriraam, N. & Kumar, G.P. Classification of epileptic seizures using wavelet packet log energy and norm entropies with recurrent Elman neural network classifier. Cogn Neurodyn 11, 51–66 (2017). https://doi.org/10.1007/s11571-016-9408-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-016-9408-y

Keywords

Navigation