Skip to main content
Log in

Complexity measures of brain wave dynamics

  • Research article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

To understand the nature of brain dynamics as well as to develop novel methods for the diagnosis of brain pathologies, recently, a number of complexity measures from information theory, chaos theory, and random fractal theory have been applied to analyze the EEG data. These measures are crucial in quantifying the key notions of neurodynamics, including determinism, stochasticity, causation, and correlations. Finding and understanding the relations among these complexity measures is thus an important issue. However, this is a difficult task, since the foundations of information theory, chaos theory, and random fractal theory are very different. To gain significant insights into this issue, we carry out a comprehensive comparison study of major complexity measures for EEG signals. We find that the variations of commonly used complexity measures with time are either similar or reciprocal. While many of these relations are difficult to explain intuitively, all of them can be readily understood by relating these measures to the values of a multiscale complexity measure, the scale-dependent Lyapunov exponent, at specific scales. We further discuss how better indicators for epileptic seizures can be constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andrzejak R, Lehnertz K, Mormann F, Rieke C, David P, Elger C (2001) Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 64:061,907

    Article  CAS  Google Scholar 

  • Aschenbrenner-Scheibe R, Maiwald T, Winterhalder M, Voss H, Timmer J, Schulze-Bonhage A (2003) How well can epileptic seizures be predicted? An evaluation of a nonlinear method. Brain Behav Evol 126:2616

    CAS  Google Scholar 

  • Atmanspacher H, Rotter S (2008) Interpreting neurodynamics: concepts and facts. Cogn Neurodyn 2:297–318

    Article  PubMed  Google Scholar 

  • Babloyantz A, Destexhe A (1986) Low-dimension chaos in an instance of epilepsy. Proc Natl Acad Sci 83:3513–3517

    Article  PubMed  CAS  Google Scholar 

  • Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88:174,102

    Article  Google Scholar 

  • Cao Y, Tung W, Gao J, Protopopescu V, Hively L (2004) Detecting dynamical changes in time series using the permutation entropy. Phys Rev E 70:046,217

    Google Scholar 

  • Cover T, Thomas J (1991) Elements of information theory. Wiley, New York

    Book  Google Scholar 

  • Deco G, Jirsa V, Robinson P, Breakspear M, Friston K (2008) The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput Biol 4:e1000,092

    Article  Google Scholar 

  • Fell J, Roschke J, Schaffner C (1996) Surrogate data analysis of sleep electroencephalograms reveals evidence for nonlinearity. Biol Cybern 75:85–92

    Article  PubMed  CAS  Google Scholar 

  • Freeman W (2009) Deep analysis of perception through dynamic structures that emerge in cortical activity from self-regulated noise. Cogn Neurodyn 3:105–116

    Article  PubMed  Google Scholar 

  • Gao J, Zheng Z (1993) Local exponential divergence plot and optimal embedding of a chaotic time series. Phys Lett A 181:153–158

    Article  Google Scholar 

  • Gao J, Zheng Z (1994) Direct dynamical test for deterministic chaos and optimal embedding of a chaotic time series. Phys Rev E 49:3807–3814

    Article  Google Scholar 

  • Gao J, Chen C, Hwang S, Liu J (1999) Noise-induced chaos. Int J Mod Phys B 13:3283–3305

    Article  Google Scholar 

  • Gao J, Hwang S, Liu J (1999) When can noise induce chaos. Phys Rev Lett 82:1132–1135

    Article  CAS  Google Scholar 

  • Gao J, Hu J, Tung W, Cao Y (2006) Distinguishing chaos from noise by scaledependent lyapunov exponent. Phys Rev E 74:066,204

    CAS  Google Scholar 

  • Gao J, Hu J, Tung W, Cao Y, Sarshar N, Roychowdhury V (2006) Assessment of long range correlation in time series: how to avoid pitfalls. Phys Rev E 73:016,117

    Google Scholar 

  • Gao J, Cao Y, Tung W, Hu J (2007) Multiscale analysis of complex time series-integration of chaos and random fractal theory, and beyond. Wiley, New York

    Google Scholar 

  • Gaspard P, Wang X (1993) Noise, chaos, and (\(\epsilon,\tau\))-entropy per unit time. Phys Rep 235:291–343

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983a) Characterization of strange attractors. Phys Rev Lett 50:346–349

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983b) Estimation of the kolmogorov entropy from a chaotic signal. Phys Rev A 28:2591–2593

    Article  Google Scholar 

  • Holmes M (2008) Dense array eeg: methodology and new hypothesis on epilepsy syndromes. Epilepsia 49(Suppl. 3):3–14

    Article  PubMed  Google Scholar 

  • Hu J, Gao J, Principe J (2006) Analysis of biomedical signals by the lempel-ziv complexity: the effect of finite data size. IEEE Trans Biomed Eng 53:2606–2609

    Article  PubMed  Google Scholar 

  • Hu J, Gao J, Tung W (2009) Characterizing heart rate variability by scale-dependent lyapunov exponent. Chaos 19:028506

    Article  PubMed  Google Scholar 

  • Hu J, Gao J, Tung W, Cao Y (2010) Multiscale analysis of heart rate variability: a comparison of different complexity measures. Ann Biomed Eng 38:854–864

    Article  PubMed  Google Scholar 

  • Hwa R, Ferree T (2002) Scaling properties of fluctuations in the human electroencephalogram. Phys Rev E 66:021901

    Article  Google Scholar 

  • Hwang K, Gao J, Liu J (2000) Noise-induced chaos in an optically injected semiconductor laser. Phys Rev E 61:5162–5170

    Article  CAS  Google Scholar 

  • Iasemidis L, Principe J, Sackellares J (1999) Measurement and quantification of spatiotemporal dynamics of human epileptic seizures. In: In nonlinear signal processing in, Press

  • Lai Y, Harrison M, Frei M, Osorio I (2003) Inability of lyapunov exponents to predict epileptic seizures. Phys Rev Lett 91:068102

    Article  PubMed  Google Scholar 

  • Lempel A, Ziv J (1976) On the complexity of finite sequences. IEEE Trans Inf Theory 22:75–81

    Article  Google Scholar 

  • Mandelbrot B (1982) The fractal geometry of nature. Freeman, San Francisco

    Google Scholar 

  • Martinerie J, Adam C, Quyen MLV, Baulac M, Clemenceau S, Renault B, Varela F (1998) Epileptic seizures can be anticipated by non-linear analysis. Nat Med 4:1173–1176

    Article  PubMed  CAS  Google Scholar 

  • Nagaragin R (2002) Quantifying physiological data with lempel-ziv complexity—certain issues. IEEE Trans Biomed Eng 49:1371–1373

    Article  Google Scholar 

  • Napolitano C, Orriols M (2008) Two types of remote propagation in mesial temporal epilepsy: analysis with scalp ictal eeg. J Clin Neurophysiol 25:69–76

    Article  PubMed  Google Scholar 

  • Packard N, Crutchfield J, Farmer J, Shaw R (1980) Gemomtry from time-series. Phys Rev Lett 45:712–716

    Article  Google Scholar 

  • Peng C, Buldyrev S, Havlin S, Simons M, Stanley H, Goldberger A (1994) On the mosaic organization of dna sequences. Phys Rev E 49:1685–1689

    Article  CAS  Google Scholar 

  • Pijn J, Vanneerven J, Noest A, Lopes Da Silva F (1991) Chaos or noise in eeg signals—dependence on state and brain site. Electroencephalogr Clin Neurophys 79:371–381

    Article  CAS  Google Scholar 

  • Plummer C, Harvey S, Cook M (2008) Eeg source localization in focal epilepsy: where are we now. Epilepsia 49:201–218

    Article  PubMed  Google Scholar 

  • Pritchard W, Duke D, Krieble K (1995) Dimensional analysis of resting human eeg ii: surrogate data testing indicates nonlinearity but not low-dimensional chaos. Psychophysiology 32:486–491

    Article  PubMed  CAS  Google Scholar 

  • Richman J, Moorman J (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278:H2039–H2049

    PubMed  CAS  Google Scholar 

  • Robinson P (2003) Interpretation of scaling properties of electroencephalographic fluctuations via spectral analysis and underlying physiology. Phys Rev E 67:032,902

    Article  CAS  Google Scholar 

  • Rombouts S, Keunen R, Stam C (1995) Investigation of nonlinear structure in multichannel eeg. Phys Lett A 202:352–358

    Article  CAS  Google Scholar 

  • Sauer T, Yorke J, Casdagli M (1991) Embedology. J Stat Phys 65:579–616

    Article  Google Scholar 

  • Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young LS (eds) Dynamical systems and turbulence, lecture notes in mathematics, vol 898. Springer, p 366

  • Theiler J, Rapp P (1996) Re-examination of the evidence for low-dimensional, nonlinear structure in the human electroencephalogram. Electroencephalogr Clin Neurophysiol 98:213–222 16

    Google Scholar 

  • Wolf A, Swift J, Swinney H, Vastano J (1985) Determining lyapunov exponents from a time series. Physica D 16:285

    Article  Google Scholar 

  • Zhang X, Roy R, Jensen E (2001) Eeg complexity as a measure of depth of anesthesia for patients. IEEE Trans Biomed Eng 48:1424–1433

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by US NSF grants CMMI-1031958 and 0826119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, J., Hu, J. & Tung, Ww. Complexity measures of brain wave dynamics. Cogn Neurodyn 5, 171–182 (2011). https://doi.org/10.1007/s11571-011-9151-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-011-9151-3

Keywords

Navigation