Skip to main content

Advertisement

Log in

An update in musculoskeletal tumors: from quantitative imaging to radiomics

  • Musculoskeletal Radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

In the last two decades, relevant progress has been made in the diagnosis of musculoskeletal tumors due to the development of new imaging tools, such as diffusion-weighted imaging, diffusion kurtosis imaging, magnetic resonance spectroscopy, and diffusion tensor imaging. Another important role has been played by the development of artificial intelligence software based on complex algorithms, which employ computing power in the detection of specific tumor types. The aim of this article is to report the most advanced imaging techniques focusing on their advantages in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Franchi A (2012) Epidemiology and classification of bone tumors. Clin Cases Miner Bone Metab 9:92–95

    PubMed  PubMed Central  Google Scholar 

  2. Bruno F, Arrigoni F, Mariani S et al (2019) Advanced magnetic resonance imaging (MRI) of soft tissue tumors: techniques and applications. Radiol Medica 124:243–252

    Article  Google Scholar 

  3. Stiller CA, Trama A, Serraino D et al (2013) Descriptive epidemiology of sarcomas in Europe: report from the RARECARE project. Eur J Cancer 49:684–695. https://doi.org/10.1016/j.ejca.2012.09.011

    Article  CAS  Google Scholar 

  4. Verstraete KL, Lang P (2000) Bone and soft tissue tumors: The role of contrast agents for MR imaging. Eur J Radiol 34:229–246. https://doi.org/10.1016/S0720-048X(00)00202-3

    Article  CAS  PubMed  Google Scholar 

  5. Costa FM, Ferreira EC, Vianna EM (2011) Diffusion-weighted magnetic resonance imaging for the evaluation of musculoskeletal tumors. Magn Reson Imag Clin N Am 19:159–180

    Article  Google Scholar 

  6. Robba T, Chianca V, Albano D et al (2017) Diffusion-weighted imaging for the cellularity assessment and matrix characterization of soft tissue tumour. Radiol Med 122:871–879. https://doi.org/10.1007/s11547-017-0787-x

    Article  PubMed  Google Scholar 

  7. Suzuki K (2012) Pixel-based machine learning in medical imaging. Int J Biomed Imag 2012:792079. https://doi.org/10.1155/2012/792079

    Article  Google Scholar 

  8. Van Rijswijk CSP, Kunz P, Hogendoorn PCW et al (2002) Diffusion-weighted MRI in the characterization of soft-tissue tumors. J Magn Reson Imag 15:302–307. https://doi.org/10.1002/jmri.10061

    Article  Google Scholar 

  9. Malayeri AA, Riham •, Khouli H El, et al (2011) Multisystem imaging principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up 1 from the. RadioGraphics 31:1773–1791 . doi: https://doi.org/10.1148/rg.316115515

  10. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol 188:1622–1635. https://doi.org/10.2214/AJR.06.1403

    Article  Google Scholar 

  11. Messina C, Bignone R, Bruno A et al (2020) Diffusion-weighted imaging in oncology: an update. Cancers (Basel) 12:1493. https://doi.org/10.3390/cancers12061493

    Article  Google Scholar 

  12. Tang L, Zhou XJ (2019) Diffusion MRI of cancer: from low to high b-values. J Magn Reson Imaging 49:23–40

    Article  Google Scholar 

  13. Bellelli A, Silvestri E, Barile A et al (2019) Position paper on magnetic resonance imaging protocols in the musculoskeletal system (excluding the spine) by the Italian College of Musculoskeletal Radiology. Radiol Med 124:522–538. https://doi.org/10.1007/s11547-019-00992-3

    Article  PubMed  Google Scholar 

  14. Subhawong TK, Jacobs MA, Fayad LM (2014) Insights into quantitative diffusion-weighted MRI for musculoskeletal tumor imaging. Am J Roentgenol 203:560–572

    Article  Google Scholar 

  15. Bhojwani N, Szpakowski P, Partovi S et al (2015) Diffusion-weighted imaging in musculoskeletal radiology-clinical applications and future directions. Quant Imag Med Surg 5:740–753. https://doi.org/10.3978/j.issn.2223-4292.2015.07.07

    Article  Google Scholar 

  16. Fukuda T, Wengler K, de Carvalho R et al (2019) MRI biomarkers in osseous tumors. J Magn Reson Imag 50:702–718. https://doi.org/10.1002/jmri.26672

    Article  Google Scholar 

  17. Wang T, Wu X, Cui Y et al (2014) Role of apparent diffusion coefficients with diffusion-weighted magnetic resonance imaging in differentiating between benign and malignant bone tumors. World J Surg Oncol. https://doi.org/10.1186/1477-7819-12-365

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yakushiji T, Oka K, Sato H et al (2009) Characterization of chondroblastic osteosarcoma: gadolinium-enhanced versus diffusion-weighted MR imaging. J Magn Reson Imag 29:895–900. https://doi.org/10.1002/jmri.21703

    Article  Google Scholar 

  19. Savarino E, Chianca V, Bodini G et al (2017) Gadolinium accumulation after contrast-enhanced magnetic resonance imaging: Which implications in patients with Crohn’s disease? Dig Liver Dis. https://doi.org/10.1016/j.dld.2017.04.010

    Article  PubMed  Google Scholar 

  20. Doniselli FM, Albano D, Chianca V et al (2017) Gadolinium accumulation after contrast-enhanced magnetic resonance imaging: what rheumatologists should know. Clin Rheumatol 36:977–980. https://doi.org/10.1007/s10067-017-3604-y

    Article  PubMed  Google Scholar 

  21. Douis H, Jeys L, Grimer R et al (2015) Is there a role for diffusion-weighted MRI (DWI) in the diagnosis of central cartilage tumors? Skeletal Radiol 44:963–969. https://doi.org/10.1007/s00256-015-2123-7

    Article  CAS  PubMed  Google Scholar 

  22. Pozzi G, Albano D, Messina C et al (2018) Solid bone tumors of the spine: diagnostic performance of apparent diffusion coefficient measured using diffusion-weighted MRI using histology as a reference standard. J Magn Reson Imag 47:1034–1042. https://doi.org/10.1002/jmri.25826

    Article  Google Scholar 

  23. Luo Z, Litao L, Gu S et al (2016) Standard-b-value vs low-b-value DWI for differentiation of benign and malignant vertebral fractures: a meta-analysis. Br J Radiol. https://doi.org/10.1259/bjr.20150384

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vilanova JC, Baleato-Gonzalez S, Romero MJ et al (2016) Assessment of musculoskeletal malignancies with functional MR imaging. Magn Reson Imag Clin N Am 24:239–259

    Article  Google Scholar 

  25. Yao K, Troupis JM (2016) Diffusion-weighted imaging and the skeletal system: a literature review. Clin Radiol 71:1071–1082

    Article  CAS  Google Scholar 

  26. Pekcevik Y, Kahya MO, Kaya A (2015) Characterization of soft tissue tumors by diffusion-weighted imaging. Iran J Radiol 12:15478. https://doi.org/10.5812/iranjradiol.15478v2

    Article  Google Scholar 

  27. Lee SY, Jee WH, Jung JY et al (2016) Differentiation of malignant from benign soft tissue tumours: use of additive qualitative and quantitative diffusion-weighted MR imaging to standard MR imaging at 3.0 T. Eur Radiol 26:743–754. https://doi.org/10.1007/s00330-015-3878-x

    Article  PubMed  Google Scholar 

  28. Razek A, Nada N, Ghaniem M, Elkhamary S (2012) Assessment of soft tissue tumours of the extremities with diffusion echoplanar MR imaging. Radiol Medica 117:96–101. https://doi.org/10.1007/s11547-011-0709-2

    Article  CAS  Google Scholar 

  29. Chhabra A, Ashikyan O, Slepicka C et al (2019) Conventional MR and diffusion-weighted imaging of musculoskeletal soft tissue malignancy: correlation with histologic grading. Eur Radiol 29:4485–4494. https://doi.org/10.1007/s00330-018-5845-9

    Article  PubMed  Google Scholar 

  30. Lee JH, Yoon YC, Seo SW et al (2020) Soft tissue sarcoma: DWI and DCE-MRI parameters correlate with Ki-67 labeling index. Eur Radiol 30:914–924. https://doi.org/10.1007/s00330-019-06445-9

    Article  PubMed  Google Scholar 

  31. Choi YJ, Lee IS, Song YS et al (2019) Diagnostic performance of diffusion-weighted (DWI) and dynamic contrast-enhanced (DCE) MRI for the differentiation of benign from malignant soft-tissue tumors. J Magn Reson Imag 50:798–809. https://doi.org/10.1002/jmri.26607

    Article  Google Scholar 

  32. Mazal AT, Ashikyan O, Cheng J et al (2019) Diffusion-weighted imaging and diffusion tensor imaging as adjuncts to conventional MRI for the diagnosis and management of peripheral nerve sheath tumors: current perspectives and future directions. Eur Radiol 29:4123–4132

    Article  Google Scholar 

  33. Pasoglou V, Michoux N, Larbi A, Van Nieuwenhove S, Lecouvet F (2018) Whole Body MRI and oncology: recent major advances. Br J Radiol 91:20170664. https://doi.org/10.1259/bjr.20170664

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jacobs MA, Pan L, Macura KJ (2009) Whole-body diffusion-weighted and proton imaging: a review of this emerging technology for monitoring metastatic cancer. Semin Roentgenol 44:111–122. https://doi.org/10.1053/j.ro.2009.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  35. Galia M, Albano D, Narese D et al (2016) Whole-body MRI in patients with lymphoma: collateral findings. Radiol Medica. https://doi.org/10.1007/s11547-016-0658-x

    Article  Google Scholar 

  36. Goudarzi B, Kishimoto R, Komatsu S et al (2010) Detection of bone metastases using diffusion weighted magnetic resonance imaging: comparison with 11C-methionine PET and bone scintigraphy. Magn Reson Imag 28:372–379. https://doi.org/10.1016/j.mri.2009.12.008

    Article  Google Scholar 

  37. Wu LM, Gu HY, Zheng J et al (2011) Diagnostic value of whole-body magnetic resonance imaging for bone metastases: a systematic review and meta-analysis. J Magn Reson Imag 34:128–135. https://doi.org/10.1002/jmri.22608

    Article  Google Scholar 

  38. Stecco A, Trisoglio A, Soligo E et al (2018) Whole-body MRI with diffusion-weighted imaging in bone metastases: a narrative review. Diagnostics 8:45. https://doi.org/10.3390/diagnostics8030045

    Article  CAS  PubMed Central  Google Scholar 

  39. Marrale M, Collura G, Brai M et al (2016) Physics, techniques and review of neuroradiological applications of diffusion kurtosis imaging (DKI). Clin Neuroradiol 26:391–403

    Article  CAS  Google Scholar 

  40. Wu G, Liu X, Xiong Y et al (2018) Intravoxel incoherent motion and diffusion kurtosis imaging for discriminating soft tissue sarcoma from vascular anomalies. Med (United States). https://doi.org/10.1097/MD.0000000000013641

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ogawa M, Kan H, Arai N et al (2019) Differentiation between malignant and benign musculoskeletal tumors using diffusion kurtosis imaging. Skeletal Radiol 48:285–292. https://doi.org/10.1007/s00256-018-2946-0

    Article  PubMed  Google Scholar 

  42. Cotten A, Haddad F, Hayek G et al (2015) Tractography: possible applications in musculoskeletal radiology. Semin Musculoskelet Radiol. https://doi.org/10.1055/s-0035-1563736

    Article  PubMed  Google Scholar 

  43. Soares JM, Marques P, Alves V, Sousa N (2013) A hitchhiker’s guide to diffusion tensor imaging. Front Neurosci. https://doi.org/10.3389/fnins.2013.00031

    Article  PubMed  PubMed Central  Google Scholar 

  44. Guggenberger R, Eppenberger P, Markovic D (2012) MR neurography of themedian nerve at 3.0T: optimization of diffusion tensor imaging and fiber tractography. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2012.03.017

    Article  PubMed  Google Scholar 

  45. Schlaffke L, Rehmann R, Froeling M et al (2017) Diffusion tensor imaging of the human calf : variation of inter- and intramuscle-specific diffusion parameters. J Magn Reson. https://doi.org/10.1002/jmri.25650

    Article  Google Scholar 

  46. Qin W, Yu CS, Zhang F et al (2009) Effects of echo time on diffusion quantification of brain white matter at 1.5 T and 3.0 T. Magn Reson Med. https://doi.org/10.1002/mrm.21920

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chianca V, Albano D, Messina C et al (2017) Diffusion tensor imaging in the musculoskeletal and peripheral nerve systems: from experimental to clinical applications. Eur Radiol Exp 1:12. https://doi.org/10.1186/s41747-017-0018-1

    Article  PubMed  PubMed Central  Google Scholar 

  48. Alexander AL, Lee JE, Lazar M, Field AS (2007) Diffusion tensor imaging of the brain. Neurotherapeutics 4:316–329. https://doi.org/10.1016/j.nurt.2007.05.011

    Article  PubMed  PubMed Central  Google Scholar 

  49. Alexander AL, Lee JE, Wu YC, Field AS (2006) Comparison of diffusion tensor imaging measurements at 3.0 T versus 1.5 T with and without parallel imaging. Neuroimag Clin N Am 16:299–309

    Article  Google Scholar 

  50. Vetrano IG, Sconfienza LM, Albano D et al (2019) Recurrence of carpal tunnel syndrome in isolated non-syndromic macrodactyly: DTI examination of a giant median nerve. Skeletal Radiol 48:989–993. https://doi.org/10.1007/s00256-018-3098-y

    Article  PubMed  Google Scholar 

  51. Savardekar AR, Patra DP, Thakur JD et al (2018) Preoperative diffusion tensor imaging-fiber tracking for facial nerve identification in vestibular schwannoma: a systematic review on its evolution and current status with a pooled data analysis of surgical concordance rates. Neurosurg Focus. https://doi.org/10.3171/2017.12.FOCUS17672

    Article  PubMed  Google Scholar 

  52. Chhabra A, Thakkar RS, Andreisek G (2013) Anatomic MR imaging and functional diffusion tensor imaging of peripheral nerve tumors and tumorlike conditions. AJNR Am J Neuroradiol. https://doi.org/10.3174/ajnr.A3316

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cage TA, Yuh EL, Hou SW et al (2015) Visualization of nerve fibers and their relationship to peripheral nerve tumors by diffusion tensor imaging. Neurosurg Focus. https://doi.org/10.3171/2015.6.FOCUS15235

    Article  PubMed  Google Scholar 

  54. Van Der Graaf M (2010) In vivo magnetic resonance spectroscopy: basic methodology and clinical applications. Eur Biophys J 39:527–540

    Article  Google Scholar 

  55. Liu Y, Gu Y, Yu X (2017) Assessing tissue metabolism by phosphorous-31 Magnetic resonance spectroscopy and imaging: a methodology review. Quant Imag Med Surg 7:707–726

    Article  Google Scholar 

  56. Subhawong TK, Wang X, Durand DJ et al (2012) Proton MR spectroscopy in metabolic assessment of musculoskeletal lesions. Am J Roentgenol 198:162–172. https://doi.org/10.2214/AJR.11.6505

    Article  Google Scholar 

  57. Deshmukh S, Subhawong T, Carrino JA, Fayad L (2014) Role of MR spectroscopy in musculoskeletal imaging. Indian J Radiol Imag 24:210–216. https://doi.org/10.4103/0971-3026.137024

    Article  Google Scholar 

  58. Faghihi R, Zeinali-Rafsanjani B, Mosleh-Shirazi MA et al (2017) Magnetic resonance spectroscopy and its clinical applications: a review. J Med Imag Radiat Sci 48:233–253

    Article  Google Scholar 

  59. Ogg RJ, Kingsley PB, Taylor JS (1994) WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson Ser B 104:1–10. https://doi.org/10.1006/jmrb.1994.1048

    Article  CAS  Google Scholar 

  60. Amar M, Ghasi RG, Krishna LG, Khanna G (2019) Proton MR spectroscopy in characterization of focal bone lesions of peripheral skeleton. Egypt J Radiol Nucl Med 50:91. https://doi.org/10.1186/s43055-019-0109-5

    Article  Google Scholar 

  61. Wang CK, Li CW, Hsieh TJ et al (2004) Characterization of bone and soft-tissue tumors with in vivo 1H MR spectroscopy: initial results. Radiology 232:599–605. https://doi.org/10.1148/radiol.2322031441

    Article  PubMed  Google Scholar 

  62. Doganay S, Altinok T, Alkan A et al (2011) The role of MRS in the differentiation of benign and malignant soft tissue and bone tumors. Eur J Radiol 79:e33–e37. https://doi.org/10.1016/j.ejrad.2010.12.089

    Article  PubMed  Google Scholar 

  63. Costa FM, Canella C, Gasparetto E (2011) Advanced magnetic resonance imaging techniques in the evaluation of musculoskeletal tumors. Radiol Clin North Am 49:1325–1358

    Article  Google Scholar 

  64. Gondim Teixeira PA, Ledrich M, Kauffmann F et al (2017) Qualitative 3-T proton MR spectroscopy for the characterization of musculoskeletal neoplasms: update on diagnostic performance and indications. Am J Roentgenol 208:1312–1319. https://doi.org/10.2214/AJR.16.17285

    Article  Google Scholar 

  65. Xu W, Hao D, Hou F et al (2020) Soft tissue sarcoma: preoperative MRI-based radiomics and machine learning may be accurate predictors of histopathologic grade. Am J Roentgenol 215:963–969. https://doi.org/10.2214/AJR.19.22147

    Article  Google Scholar 

  66. Cabitza F, Campagner A, Albano D et al (2020) The elephant in the machine: proposing a new metric of data reliability and its application to a medical case to assess classification reliability. Appl Sci 10:4014. https://doi.org/10.3390/app10114014

    Article  CAS  Google Scholar 

  67. Gorelik N, Gyftopoulos S (2021) Applications of artificial intelligence in musculoskeletal imaging: from the request to the report. Can Assoc Radiol J 72:45–59

    Article  Google Scholar 

  68. Campagner A, Sconfienza L, Cabitza F (2020) H-Accuracy, an alternative metric to assess classification models in medicine. In: Studies in health technology and informatics. IOS, 16;270:242–246. https://doi.org/10.3233/SHTI200159

  69. Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine learning for medical imaging. Radiographics 37:505–515. https://doi.org/10.1148/rg.2017160130

    Article  PubMed  Google Scholar 

  70. Chartrand G, Cheng PM, Vorontsov E et al (2017) Deep learning: a primer for radiologists. Radiographics 37:2113–2131. https://doi.org/10.1148/rg.2017170077

    Article  PubMed  Google Scholar 

  71. Do S, Song KD, Chung JW (2020) Basics of deep learning: a radiologist’s guide to understanding published radiology articles on deep learning. Korean J Radiol 21:33–41

    Article  Google Scholar 

  72. Pesapane F, Codari M, Sardanelli F (2018) Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp 24(2):35. https://doi.org/10.1186/s41747-018-0061-6

    Article  Google Scholar 

  73. Crombé A, Marcellin PJ, Buy X et al (2019) Soft-tissue sarcomas: assessment of MRI features correlating with histologic grade and patient outcome. Radiology 291:710–721. https://doi.org/10.1148/radiol.2019181659

    Article  PubMed  Google Scholar 

  74. Corino VDA, Montin E, Messina A et al (2018) Radiomic analysis of soft tissues sarcomas can distinguish intermediate from high-grade lesions. J Magn Reson Imag 47:829–840. https://doi.org/10.1002/jmri.25791

    Article  Google Scholar 

  75. Zhang Y, Zhu Y, Shi X et al (2019) Soft tissue sarcomas: preoperative predictive histopathological grading based on radiomics of MRI. Acad Radiol 26:1262–1268. https://doi.org/10.1016/j.acra.2018.09.025

    Article  PubMed  Google Scholar 

  76. Peeken JC, Spraker MB, Knebel C et al (2019) Tumor grading of soft tissue sarcomas using MRI-based radiomics. EBioMedicine 48:332–340. https://doi.org/10.1016/j.ebiom.2019.08.059

    Article  PubMed  PubMed Central  Google Scholar 

  77. Vos M, Starmans MPA, Timbergen MJM et al (2019) Radiomics approach to distinguish between well differentiated liposarcomas and lipomas on MRI. Br J Surg 106:1800–1809. https://doi.org/10.1002/bjs.11410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lisson CS, Lisson CG, Flosdorf K et al (2018) Diagnostic value of MRI-based 3D texture analysis for tissue characterisation and discrimination of low-grade chondrosarcoma from enchondroma: a pilot study. Eur Radiol 28:468–477. https://doi.org/10.1007/s00330-017-5014-6

    Article  PubMed  Google Scholar 

  79. Fritz B, Müller DA, Sutter R et al (2018) Magnetic resonance imaging-based grading of cartilaginous bone tumors: added value of quantitative texture analysis. Invest Radiol 53:663–672. https://doi.org/10.1097/RLI.0000000000000486

    Article  PubMed  Google Scholar 

  80. Gitto S, Cuocolo R, Albano D et al (2020) MRI radiomics-based machine-learning classification of bone chondrosarcoma. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2020.109043

    Article  PubMed  Google Scholar 

  81. Lang N, Zhang Y, Zhang E et al (2019) Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI. Magn Reson Imag 64:4–12. https://doi.org/10.1016/j.mri.2019.02.013

    Article  Google Scholar 

  82. Filograna L, Lenkowicz J, Cellini F et al (2019) Identification of the most significant magnetic resonance imaging (MRI) radiomic features in oncological patients with vertebral bone marrow metastatic disease: a feasibility study. Radiol Medica 124:50–57. https://doi.org/10.1007/s11547-018-0935-y

    Article  Google Scholar 

  83. Lin P, Yang PF, Chen S et al (2020) A Delta-radiomics model for preoperative evaluation of Neoadjuvant chemotherapy response in high-grade osteosarcoma. Cancer Imag 20:7. https://doi.org/10.1186/s40644-019-0283-8

    Article  Google Scholar 

  84. Zhao S, Su Y, Duan J et al (2019) Radiomics signature extracted from diffusion-weighted magnetic resonance imaging predicts outcomes in osteosarcoma. J Bone Oncol 19:100263. https://doi.org/10.1016/j.jbo.2019.100263

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wu Y, Xu L, Yang P et al (2018) Survival prediction in high-grade osteosarcoma using radiomics of diagnostic computed tomography. EBioMedicine 34:27–34. https://doi.org/10.1016/j.ebiom.2018.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chianca V, Cuocolo R, Gitto S et al (2021) Radiomic machine learning classifiers in spine bone tumors: a multi-software. Multi-Scanner Study Eur J Radiol. https://doi.org/10.1016/j.ejrad.2021.109586

    Article  PubMed  Google Scholar 

Download references

Funding

No funds, grants, or other support was received. The authors declare they have no financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Chianca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was not necessary for this review article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chianca, V., Albano, D., Messina, C. et al. An update in musculoskeletal tumors: from quantitative imaging to radiomics. Radiol med 126, 1095–1105 (2021). https://doi.org/10.1007/s11547-021-01368-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-021-01368-2

Keywords

Navigation