Skip to main content

Advertisement

Log in

Relationship between visceral adipose tissue and genetic mutations (VHL and KDM5C) in clear cell renal cell carcinoma

  • Abdominal Radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Background

The sequencing of the renal cell carcinoma (RCC) genome has detected several mutations with prognostic meaning. The association between visceral adipose tissue (VAT) and clear cell renal cell carcinoma (ccRCC) is well known. The relationship among abdominal adipose tissue distribution and ccRCC-VHL and KDM5C genetic mutations is, to the knowledge of the authors, not known.

Methods

In this retrospective study, we enrolled 97 Caucasian male patients divided into three groups: the control group (n = 35), the ccRCC-VHL group (n = 52) composed of ccRCC patients with VHL mutations and ccRCC-KDM5C group (n = 10) composed of ccRCC patients with KDM5C mutation. Total adipose tissue (TAT) area, VAT area and subcutaneous adipose tissue (SAT) area were measured in the groups. VAT/SAT ratio was calculated for each subject.

Results

Statistically significant differences between ccRCC-KDM5C group and ccRCC-VHL group were obtained for TAT area (p < 0.05), VAT area (p < 0.05) and VAT/SAT ratio (p < 0.05); between ccRCC-VHL group and control group for TAT area (p < 0.001) and VAT area (p < 0.01); and between ccRCC-KDM5C group and control group for TAT area (p < 0.0001), VAT area (p < 0.0001) and SAT area (p < 0.01).

Conclusions

This study demonstrates for the first time an increased amount of TAT, especially VAT, in the ccRCC-VHL and ccRCC-KDM5C groups. The effect was greater for the ccRCC-KDM5C group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kuo MD, Jamshidi N (2014) Behind the numbers: decoding molecular phenotypes with radiogenomics-guiding principles and technical considerations. Radiology 270(2):320–325

    Article  Google Scholar 

  2. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  Google Scholar 

  3. Alessandrino F, Krajewski KM, Shinagare AB (2016) Update on radiogenomics of clear cell renal cell carcinoma. Eur Urol Focus 2(6):572–573

    Article  Google Scholar 

  4. Pinker K, Shitano F, Sala E, Do Richard K, Young Robert J, Wibmer Andreas G et al (2018) Background, current role, and potential applications of radiogenomics. J Magn Reson Imaging 47:604–620

    Article  Google Scholar 

  5. Sala E, Mema E, Himoto Y, Veeraraghavan H, Brenton JD, Snyder A et al (2017) Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol 72(1):3–10

    Article  CAS  Google Scholar 

  6. The Cancer Genome Atlas Research Network (2013) Comprehen- sive molecular characterization of clear cell renal cell carcinoma. Nature 499(7456):43–49

    Article  Google Scholar 

  7. Karlo CA, Di Paolo PL, Chaim J, Ari Hakimi A, Ostrovnaya I, Russo P et al (2014) Radiogenomics of clear-cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology 270(2):464–471

    Article  Google Scholar 

  8. Shinagare AB, Vikram R, Jaffe C, Akin O, Kirby J, Huang E et al (2015) Radiogenomics of clear cell renal cell carcinoma: preliminary findings of The Cancer Genome Atlas-Renal Cell Carcinoma (TCGA–RCC) Imaging Re- search Group. Abdom Imaging 40(6):1684–1692

    Article  Google Scholar 

  9. Seizinger BR, Rouleau GA, Ozelius LJ, Lane AH, Farmer GE, Lamiell JM et al (1988) Von Hippel– Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332(6161):268–269

    Article  CAS  Google Scholar 

  10. Alessandrino F, Shinagare AB, Bossé D, Choueiri CK (2019) Krajewski KM (2019) Radiogenomics in renal cell carcinoma. Abdom Radiol (NY) 44(6):1990–1998

    Article  Google Scholar 

  11. Ibrahim MM (2020) Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev Off J Int Assoc Study Obes 11(1):11–18

    Article  Google Scholar 

  12. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY et al (2007) Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116(1):39–48

    Article  Google Scholar 

  13. Greco F, Cirimele V, Mallio CA, Beomonte Zobel B, Grasso RF (2018) Increased visceral adipose tissue in male patients with clear cell renal cell carcinoma. Clin Cancer Investig J 7(4):132–136

    Article  Google Scholar 

  14. Del Buono R, Sabatino L, Greco F (2018) Neck fat volume as a potential indicator of difficult intubation: a pilot study. Saudi J Anaesth 12:67–71

    Article  Google Scholar 

  15. Greco F, Mallio CA, Cirimele V, Grasso RF, Beomonte Zobel B (2019) Subcutaneous adipose tissue as a biomarker of pancreatic cancer: a pilot study in male patients. Clin Cancer Investig J 8(3):10–19

    Article  Google Scholar 

  16. Mallio CA, Greco F, Pacella G, Schena E, Beomonte Zobel B (2018) Gender-based differences of abdominal adipose tissue distribution in non-small cell lung cancer patients. Shanghai Chest 2(20)

  17. Despres JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444(7121):881–887

    Article  CAS  Google Scholar 

  18. Zhang HP, Zou J, Xu ZQ, Ruan J, Yang SD, Yin Y et al (2017) Association of leptin, visfatin, apelin, resistin and adiponectin with clear cell renal cell carcinoma. Oncol Lett 13:463–468

    Article  CAS  Google Scholar 

  19. Buechler C, Krautbauer S, Eisinger K (2015) Adipose tissue fibrosis. World J Diabetes 6(4):548–553

    Article  Google Scholar 

  20. de Cubas AA, Rathmell WK (2018) Epigenetic modifers: activities in renal cell carcinoma. Nat Rev Urol 15(10):599–614

    Article  Google Scholar 

  21. NIH National Cancer Institute: https://cancergenome.nih.gov/

  22. Akin O, Elnajjar P, Heller M, Jarosz R, Erickson BJ, Kirk S et al (2016) Radiology data from the cancer genome atlas kidney renal clear cell carcinoma [TCGA-KIRC] collection. Cancer Imaging Arch. https://doi.org/10.7937/K9/TCIA.2016.V6PBVTDR

    Article  Google Scholar 

  23. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P et al (2013) The Cancer Imaging Archive (TCIA): maintaining and Operating a Public Information Repository. J Digit Imaging 26(6):1045–1057

    Article  Google Scholar 

  24. Noumura Y, Kamishima T, Sutherland K, Nishimura H (2017) Visceral adipose tissue area measurement at a single level: can it represent visceral adipose tissue volume? Br J Radiol 90(1077):20170253

    Article  Google Scholar 

  25. Greco F, Quarta LG, Grasso RF, Beomonte Zobel B, Mallio CA (2020) Increased visceral adipose tissue in clear cell renal cell carcinoma with and without peritumoral collateral vessels. Br J Radiol 93(1112):20200334

    Article  Google Scholar 

  26. Greco F, Mallio CA, Grippo R, Messina L, Vallese S, Rabitti C et al (2020) Increased visceral adipose tissue in male patients with non-clear cell renal cell carcinoma. Radiol Med 125:538–543

    Article  Google Scholar 

  27. Fischer-Posovszky P, Wabitsch M, Hochberg Z (2007) Endocrinology of adipose tissue: An update. Horm Metab Res 39(5):314–321

    Article  CAS  Google Scholar 

  28. Raucci R, Rusolo F, Sharma A, Colonna G, Castello G, Costantini S et al (2013) Functional and structural features of adipokine family. Cytokine 61(1):1–14

    Article  CAS  Google Scholar 

  29. Bolinder J, Kerckhoffs DA, Moberg E, Toft E, Arner P (2000) Rates of skeletal muscle and adipose tissue glycerol release in nonobese and obese subjects. Diabetes 49:797–802

    Article  CAS  Google Scholar 

  30. Pasarica M, Sereda OR, Redman LM, Albarado DC, Hymel DT, Roan LE, Rood JC, Burk DH, Smith SR (2009) Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58:718–725

    Article  CAS  Google Scholar 

  31. Brahimi-Horn MC, Pouysségur J (2007) Oxygen, a source of life and stress. FEBS Lett 581:3582–3591

    Article  CAS  Google Scholar 

  32. Goossens GH, Moors CCM, van der Zijl NJ, Venteclef RA, Jocken JWE, Essers Y, Cleutjens JP, Clément K, Diamant M, Blaak EE (2012) Valsartan improves adipose tissue function in humans with impaired glucose metabolism: A randomized placebo-controlled double-blind trial. PLoS One 7:e39930

    Article  CAS  Google Scholar 

  33. Goossens GH, Blaak EE (2015) Adipose tissue dysfunction and impaired metabolic health in human obesity: a matter of oxygen? Front Endocrinol 6:55

    Article  Google Scholar 

  34. García-Fuentes E, Santiago-Fernández C, Gutiérrez-Repiso C, Mayas MD, Oliva-Olivera W, Coín-Aragüez L et al (2015) Hypoxia is associated with a lower expression of genes involved in lipogenesis in visceral adipose tissue. J Transl Med 13:373

    Article  Google Scholar 

  35. Masoud GN, Li W (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5(5):378–389

    Article  Google Scholar 

  36. Brugarolas J (2014) Molecular genetics of clear-cell renal cell carcinoma. J Clin Oncol 32(18):1968–1976

    Article  CAS  Google Scholar 

  37. Stebbins CE, Kaelin WG Jr, Pavletich NP (1999) Structure of the VHL-ElonginC–ElonginB complex: implications for VHL tumor suppressor function. Science 284:455–461

    Article  CAS  Google Scholar 

  38. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Veux EC, Cockman ME (1999) The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275

    Article  CAS  Google Scholar 

  39. Cancer Genome Atlas Research Network (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499:43–49. https://doi.org/10.1038/nature12222PMID: 23792563

    Article  CAS  Google Scholar 

  40. Niu X, Zhang T, Liao L, Zhou L, Lindner DJ, Zhou M et al (2012) The Von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene 31:776–786. https://doi.org/10.1038/onc.2011.266PMID: 21725364

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. FG, CAM helped in conception and design, definition of intellectual content, literature search, clinical studies, experimental studies, data analysis, statistical analysis. FG contributed to data acquisition, manuscript preparation. CAM was involved in manuscript editing and manuscript review. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Federico Greco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

Institutional review board was not required because this is an observational retrospective study, and only existing information collected from human participants are used, and there are not any identifiers linking individual to the data. This article does not contain any studies with animals performed by any of the authors.

Informed consent

The study was performed in accordance with the Declaration of Helsinki. The institutional ethical committee approved the study. All subjects enrolled provided a written informed consent to use their anonymized data for research purposes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greco, F., Mallio, C.A. Relationship between visceral adipose tissue and genetic mutations (VHL and KDM5C) in clear cell renal cell carcinoma. Radiol med 126, 645–651 (2021). https://doi.org/10.1007/s11547-020-01310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-020-01310-y

Keywords

Navigation