Skip to main content

Advertisement

Log in

Gadolinium retention in the body: what we know and what we can do

  • CONTRAST MEDIA
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Gadolinium-based contrast agents (GBCA), widely used in Magnetic Resonance Imaging (MRI) for almost 30 years, were recently shown to be deposited in the brain and to induce persistent T1 shortening in deep gray matter structures in subjects with normal renal function. The aim of the present study is to summarize the evidence derived from the rapidly growing scientific literature on Gadolinium retention in the brain and in the rest of the body. To this end, the original articles that described imaging and pathology findings in humans and animals exposed to GBCA were reviewed. The main aspects that emerged were the different effects of linear and macrocyclic GBCA on brain MRI appearance, the evidence of Gadolinium tissue retention in multiple organs, and the debated issue of the possible clinical consequences. Although no adverse health effects have been documented so far, updated information about GBCA build-up in the body is necessary for health professionals, also in view of the increasing concern in the general population. To date, our knowledge about the mechanisms of Gadolinium tissue deposition and, above all, its long-term consequences is still largely incomplete. However, while official guidelines are eagerly awaited, some advices may already be given, to help our radiological daily practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sherry AD, Caravan P, Lenkinski RE (2009) Primer on gadolinium chemistry. J Magn Reson Imaging 30(6):1240–1248. doi:10.1002/jmri.21966

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hao D, Ai T, Goerner F, Hu X, Runge VM, Tweedle M (2012) MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging 36(5):1060–1071. doi:10.1002/jmri.23725

    Article  PubMed  Google Scholar 

  3. Kanal E (2016) Gadolinium based contrast agents (GBCA): safety overview after 3 decades of clinical experience. Magn Reson Imaging 34(10):1341–1345. doi:10.1016/j.mri.2016.08.017

    Article  CAS  PubMed  Google Scholar 

  4. Jung JW, Kang HR, Kim MH, Lee W, Min KU, Han MH, Cho SH (2012) Immediate hypersensitivity reaction to gadolinium-based MR contrast media. Radiology 264(2):414–422. doi:10.1148/radiol.12112025

    Article  PubMed  Google Scholar 

  5. Bruder O, Schneider S, Pilz G, van Rossum AC, Schwitter J, Nothnagel D, Lombardi M, Buss S, Wagner A, Petersen S, Greulich S, Jensen C, Nagel E, Sechtem U, Mahrholdt H (2015) 2015 Update on acute adverse reactions to gadolinium based contrast agents in cardiovascular MR. Large multi-national and multi-ethnical population experience with 37788 patients from the EuroCMR registry. J Cardiovasc Magn Reson 17:58. doi:10.1186/s12968-015-0168-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aime S, Caravan P (2009) Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. J Magn Reson Imaging 30(6):1259–1267. doi:10.1002/jmri.21969

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rogosnitzky M, Branch S (2016) Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 29(3):365–376. doi:10.1007/s10534-016-9931-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Port M, Idee JM, Medina C, Robic C, Sabatou M, Corot C (2008) Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review. Biometals 21(4):469–490. doi:10.1007/s10534-008-9135-x

    Article  CAS  PubMed  Google Scholar 

  9. Thomsen HS, Morcos SK, Almen T, Bellin MF, Bertolotto M, Bongartz G, Clement O, Leander P, Heinz-Peer G, Reimer P, Stacul F, van der Molen A, Webb JA (2013) Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR contrast medium safety committee guidelines. Eur Radiol 23(2):307–318. doi:10.1007/s00330-012-2597-9

    Article  PubMed  Google Scholar 

  10. Kanda T, Nakai Y, Oba H, Toyoda K, Kitajima K, Furui S (2016) Gadolinium deposition in the brain. Magn Reson Imaging 34(10):1346–1350. doi:10.1016/j.mri.2016.08.024

    Article  CAS  PubMed  Google Scholar 

  11. Tien RD, Brasch RC, Jackson DE, Dillon WP (1989) Cerebral Erdheim-Chester disease: persistent enhancement with Gd-DTPA on MR images. Radiology 172(3):791–792. doi:10.1148/radiology.172.3.2772189

    Article  CAS  PubMed  Google Scholar 

  12. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270(3):834–841. doi:10.1148/radiol.13131669

    Article  PubMed  Google Scholar 

  13. Errante Y, Cirimele V, Mallio CA, Di Lazzaro V, Zobel BB, Quattrocchi CC (2014) Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Invest Radiol 49(10):685–690. doi:10.1097/RLI.0000000000000072

    Article  CAS  PubMed  Google Scholar 

  14. Quattrocchi CC, Mallio CA, Errante Y, Cirimele V, Carideo L, Ax A, Zobel BB (2015) Gadodiamide and dentate nucleus T1 hyperintensity in patients with meningioma evaluated by multiple follow-up contrast-enhanced magnetic resonance examinations with no systemic interval therapy. Invest Radiol 50(7):470–472. doi:10.1097/RLI.0000000000000154

    Article  PubMed  Google Scholar 

  15. Kanda T, Osawa M, Oba H, Toyoda K, Kotoku J, Haruyama T, Takeshita K, Furui S (2015) High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 275(3):803–809. doi:10.1148/radiol.14140364

    Article  PubMed  Google Scholar 

  16. Radbruch A, Haase R, Kieslich PJ, Weberling LD, Kickingereder P, Wick W, Schlemmer HP, Bendszus M (2017) No signal intensity increase in the dentate nucleus on unenhanced T1-weighted MR images after more than 20 serial injections of macrocyclic gadolinium-based contrast agents. Radiology 282(3):699–707. doi:10.1148/radiol.2016162241

    Article  PubMed  Google Scholar 

  17. Radbruch A, Weberling LD, Kieslich PJ, Eidel O, Burth S, Kickingereder P, Heiland S, Wick W, Schlemmer HP, Bendszus M (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275(3):783–791. doi:10.1148/radiol.2015150337

    Article  PubMed  Google Scholar 

  18. Radbruch A, Weberling LD, Kieslich PJ, Hepp J, Kickingereder P, Wick W, Schlemmer HP, Bendszus M (2015) High-Signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evaluation of the macrocyclic gadolinium-based contrast agent gadobutrol. Investig Radiol 50(12):805–810. doi:10.1097/RLI.0000000000000227

    Article  CAS  Google Scholar 

  19. Radbruch A, Weberling LD, Kieslich PJ, Hepp J, Kickingereder P, Wick W, Schlemmer HP, Bendszus M (2016) Intraindividual analysis of signal intensity changes in the dentate nucleus after consecutive serial applications of linear and macrocyclic gadolinium-based contrast agents. Invest Radiol 51(11):683–690. doi:10.1097/RLI.0000000000000308

    Article  CAS  PubMed  Google Scholar 

  20. Weberling LD, Kieslich PJ, Kickingereder P, Wick W, Bendszus M, Schlemmer HP, Radbruch A (2015) Increased signal intensity in the dentate nucleus on unenhanced T1-weighted images after gadobenate dimeglumine administration. Invest Radiol 50(11):743–748. doi:10.1097/RLI.0000000000000206

    Article  CAS  PubMed  Google Scholar 

  21. Kanal E, Tweedle MF (2015) Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology 275(3):630–634. doi:10.1148/radiol.2015150805

    Article  PubMed  Google Scholar 

  22. Ramalho J, Castillo M, AlObaidy M, Nunes RH, Ramalho M, Dale BM, Semelka RC (2015) High signal intensity in globus pallidus and dentate nucleus on unenhanced T1-weighted MR Images: evaluation of two linear gadolinium-based contrast agents. Radiology 276(3):836–844. doi:10.1148/radiol.2015150872

    Article  PubMed  Google Scholar 

  23. Ramalho J, Semelka RC, AlObaidy M, Ramalho M, Nunes RH, Castillo M (2016) Signal intensity change on unenhanced T1-weighted images in dentate nucleus following gadobenate dimeglumine in patients with and without previous multiple administrations of gadodiamide. Eur Radiol 26(11):4080–4088. doi:10.1007/s00330-016-4269-7

    Article  PubMed  Google Scholar 

  24. Huckle JE, Altun E, Jay M, Semelka RC (2016) Gadolinium deposition in humans: when did we learn that gadolinium was deposited in vivo? Invest Radiol 51(4):236–240. doi:10.1097/RLI.0000000000000228

    Article  CAS  PubMed  Google Scholar 

  25. Stojanov DA, Aracki-Trenkic A, Vojinovic S, Benedeto-Stojanov D, Ljubisavljevic S (2016) Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1 W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol. Eur Radiol 26(3):807–815. doi:10.1007/s00330-015-3879-9

    Article  PubMed  Google Scholar 

  26. Cao Y, Huang DQ, Shih G, Prince MR (2016) Signal change in the dentate nucleus on T1-weighted MR images after multiple administrations of gadopentetate dimeglumine versus gadobutrol. AJR Am J Roentgenol 206(2):414–419. doi:10.2214/AJR.15.15327

    Article  PubMed  Google Scholar 

  27. Kromrey ML, Liedtke KR, Ittermann T, Langner S, Kirsch M, Weitschies W, Kuhn JP (2017) Intravenous injection of gadobutrol in an epidemiological study group did not lead to a difference in relative signal intensities of certain brain structures after 5 years. Eur Radiol 27(2):772–777. doi:10.1007/s00330-016-4418-z

    Article  PubMed  Google Scholar 

  28. Schlemm L, Chien C, Bellmann-Strobl J, Dorr J, Wuerfel J, Brandt AU, Paul F, Scheel M (2016) Gadopentetate but not gadobutrol accumulates in the dentate nucleus of multiple sclerosis patients. Mult Scler. doi:10.1177/1352458516670738

    PubMed  Google Scholar 

  29. Jost G, Lenhard DC, Sieber MA, Lohrke J, Frenzel T, Pietsch H (2016) Signal increase on unenhanced T1-weighted images in the rat brain after repeated, extended doses of gadolinium-based contrast agents: comparison of linear and macrocyclic agents. Invest Radiol 51(2):83–89. doi:10.1097/RLI.0000000000000242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Adin ME, Kleinberg L, Vaidya D, Zan E, Mirbagheri S, Yousem DM (2015) Hyperintense dentate nuclei on T1-weighted MRI: relation to repeat gadolinium administration. AJNR Am J Neuroradiol 36(10):1859–1865. doi:10.3174/ajnr.A4378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bae S, Lee HJ, Han K, Park YW, Choi YS, Ahn SS, Kim J, Lee SK (2017) Gadolinium deposition in the brain: association with various GBCAs using a generalized additive model. Eur Radiol. doi:10.1007/s00330-016-4724-5

    Google Scholar 

  32. Flood TF, Stence NV, Maloney JA, Mirsky DM (2017) Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology 282(1):222–228. doi:10.1148/radiol.2016160356

    Article  PubMed  Google Scholar 

  33. Hu HH, Pokorney A, Towbin RB, Miller JH (2016) Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evidence in children undergoing multiple gadolinium MRI exams. Pediatr Radiol 46(11):1590–1598. doi:10.1007/s00247-016-3646-3

    Article  PubMed  Google Scholar 

  34. Oner AY, Barutcu B, Aykol S, Tali ET (2016) Intrathecal contrast-enhanced magnetic resonance imaging-related brain signal changes: residual gadolinium deposition? Invest Radiol. doi:10.1097/RLI.0000000000000327

    Google Scholar 

  35. Roberts DR, Holden KR (2016) Progressive increase of T1 signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in the pediatric brain exposed to multiple doses of gadolinium contrast. Brain Dev 38(3):331–336. doi:10.1016/j.braindev.2015.08.009

    Article  PubMed  Google Scholar 

  36. Zhang Y, Cao Y, Shih GL, Hecht EM, Prince MR (2017) Extent of signal hyperintensity on unenhanced T1-weighted brain MR images after more than 35 administrations of linear gadolinium-based contrast agents. Radiology 282(2):516–525. doi:10.1148/radiol.2016152864

    Article  PubMed  Google Scholar 

  37. Popescu BF, Robinson CA, Rajput A, Rajput AH, Harder SL, Nichol H (2009) Iron, copper, and zinc distribution of the cerebellum. Cerebellum 8(2):74–79. doi:10.1007/s12311-008-0091-3

    Article  CAS  PubMed  Google Scholar 

  38. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13(10):1045–1060. doi:10.1016/S1474-4422(14)70117-6

    Article  CAS  PubMed  Google Scholar 

  39. Zheng W (2001) Toxicology of choroid plexus: special reference to metal-induced neurotoxicities. Microsc Res Tech 52(1):89–103. doi:10.1002/1097-0029(20010101)52:1<89:AID-JEMT11>3.0.CO;2-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rasschaert M, Idee JM, Robert P, Fretellier N, Vives V, Violas X, Ballet S, Corot C (2016) Moderate renal failure accentuates T1 signal enhancement in the deep cerebellar nuclei of gadodiamide-treated rats. Invest Radiol. doi:10.1097/RLI.0000000000000339

    PubMed Central  Google Scholar 

  41. Kanda T, Oba H, Toyoda K, Kitajima K, Furui S (2016) Brain gadolinium deposition after administration of gadolinium-based contrast agents. Jpn J Radiol 34(1):3–9. doi:10.1007/s11604-015-0503-5

    Article  CAS  PubMed  Google Scholar 

  42. Khant ZA, Hirai T, Kadota Y, Masuda R, Yano T, Azuma M, Suzuki Y, Tashiro K (2017) T1 shortening in the cerebral cortex after multiple administrations of gadolinium-based contrast agents. Magn Reson Med Sci 16(1):84–86. doi:10.2463/mrms.mp.2016-0054

    Article  PubMed  Google Scholar 

  43. Eisele P, Alonso A, Szabo K, Ebert A, Ong M, Schoenberg SO, Gass A (2016) Lack of increased signal intensity in the dentate nucleus after repeated administration of a macrocyclic contrast agent in multiple sclerosis: an observational study. Medicine (Baltimore) 95(39):e4624. doi:10.1097/MD.0000000000004624

    Article  CAS  Google Scholar 

  44. Tedeschi E, Cocozza S, Borrelli P, Ugga L, Morra VB, Palma G (2017) Longitudinal assessment of Dentate Nucleus relaxometry during massive exposure to gadobutrol. Magn Reson Med Sci. doi:10.2463/mrms.cr.2016-0137

    PubMed  Google Scholar 

  45. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275(3):772–782. doi:10.1148/radiol.15150025

    Article  PubMed  Google Scholar 

  46. Jost G, Frenzel T, Lohrke J, Lenhard DC, Naganawa S, Pietsch H (2016) Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue. Eur Radiol. doi:10.1007/s00330-016-4654-2

    PubMed  Google Scholar 

  47. Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M (2016) Gadolinium-based contrast agent accumulation and toxicity: an update. AJNR Am J Neuroradiol 37(7):1192–1198. doi:10.3174/ajnr.A4615

    Article  CAS  PubMed  Google Scholar 

  48. Tanaka M, Nakahara K, Kinoshita M (2016) Increased signal intensity in the dentate nucleus of patients with multiple sclerosis in comparison with neuromyelitis optica spectrum disorder after multiple doses of gadolinium contrast. Eur Neurol 75(3–4):195–198. doi:10.1159/000445431

    Article  CAS  PubMed  Google Scholar 

  49. Ramalho J, Ramalho M, AlObaidy M, Semelka RC (2016) Technical aspects of MRI signal change quantification after gadolinium-based contrast agent’s administration. Magn Reson Imaging 34(10):1355–1358. doi:10.1016/j.mri.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  50. Tedeschi E, Palma G, Canna A, Cocozza S, Russo C, Borrelli P, Lanzillo R, Angelini V, Postiglione E, Morra VB, Salvatore M, Brunetti A, Quarantelli M (2016) In vivo dentate nucleus MRI relaxometry correlates with previous administration of Gadolinium-based contrast agents. Eur Radiol 26(12):4577–4584. doi:10.1007/s00330-016-4245-2

    Article  PubMed  Google Scholar 

  51. Palma G, Tedeschi E, Borrelli P, Cocozza S, Russo C, Liu S, Ye Y, Comerci M, Alfano B, Salvatore M, Haacke EM, Mancini M (2015) A novel multiparametric approach to 3d quantitative mri of the brain. PLoS One 10(8):e0134963. doi:10.1371/journal.pone.0134963

    Article  PubMed  PubMed Central  Google Scholar 

  52. Borrelli P, Palma G, Tedeschi E, Cocozza S, Comerci M, Alfano B, Haacke EM, Salvatore M (2015) Improving signal-to-noise ratio in susceptibility weighted imaging: a novel multicomponent non-local approach. PLoS One 10(6):e0126835. doi:10.1371/journal.pone.0126835

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cheng HL, Stikov N, Ghugre NR, Wright GA (2012) Practical medical applications of quantitative MR relaxometry. J Magn Reson Imaging 36(4):805–824. doi:10.1002/jmri.23718

    Article  PubMed  Google Scholar 

  54. Kuno H, Jara H, Buch K, Qureshi MM, Chapman MN, Sakai O (2017) Global and regional brain assessment with quantitative mr imaging in patients with prior exposure to linear gadolinium-based contrast Agents. Radiology 283:195–204. doi:10.1148/radiol.2016160674

    Article  PubMed  Google Scholar 

  55. Hinoda T, Fushimi Y, Okada T, Arakawa Y, Liu C, Yamamoto A, Yoshida K, Miyamoto S, Togashi K (2016) Quantitative assessment of gadolinium deposition in dentate nucleus using quantitative susceptibility mapping. J Magn Reson Imaging. doi:10.1002/jmri.25490

    PubMed  Google Scholar 

  56. Ginat DT, Meyers SP (2012) Intracranial lesions with high signal intensity on T1-weighted MR images: differential diagnosis. Radiographics 32(2):499–516. doi:10.1148/rg.322105761

    Article  PubMed  Google Scholar 

  57. Chen W, Zhu W, Kovanlikaya I, Kovanlikaya A, Liu T, Wang S, Salustri C, Wang Y (2014) Intracranial calcifications and hemorrhages: characterization with quantitative susceptibility mapping. Radiology 270(2):496–505. doi:10.1148/radiol.13122640

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cocozza S, Russo C, Pontillo G, Ugga L, Macera A, Cervo A, De Liso M, Di Paolo N, Ginocchio MI, Giordano F, Leone G, Rusconi G, Stanzione A, Briganti F, Quarantelli M, Caranci F, D’Amico A, Elefante A, Tedeschi E, Brunetti A (2016) Is advanced neuroimaging for neuroradiologists? A systematic review of the scientific literature of the last decade. Neuroradiology 58(12):1233–1239. doi:10.1007/s00234-016-1761-3

    Article  PubMed  Google Scholar 

  59. Xia D, Davis RL, Crawford JA, Abraham JL (2010) Gadolinium released from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy dispersive X-ray spectroscopy. Acta Radiol 51(10):1126–1136. doi:10.3109/02841851.2010.515614

    Article  PubMed  Google Scholar 

  60. Kanda T, Fukusato T, Matsuda M, Toyoda K, Oba H, Kotoku J, Haruyama T, Kitajima K, Furui S (2015) Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276(1):228–232. doi:10.1148/radiol.2015142690

    Article  PubMed  Google Scholar 

  61. Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D, Maravilla KR (2016) Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Invest Radiol 51(7):447–453. doi:10.1097/RLI.0000000000000252

    Article  CAS  PubMed  Google Scholar 

  62. Robert P, Lehericy S, Grand S, Violas X, Fretellier N, Idee JM, Ballet S, Corot C (2015) T1-weighted hypersignal in the deep cerebellar nuclei after repeated administrations of gadolinium-based contrast agents in healthy rats: difference between linear and macrocyclic agents. Invest Radiol 50(8):473–480. doi:10.1097/RLI.0000000000000181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Robert P, Violas X, Grand S, Lehericy S, Idee JM, Ballet S, Corot C (2016) Linear gadolinium-based contrast agents are associated with brain gadolinium retention in healthy rats. Invest Radiol 51(2):73–82. doi:10.1097/RLI.0000000000000241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kartamihardja AA, Nakajima T, Kameo S, Koyama H, Tsushima Y (2016) Distribution and clearance of retained gadolinium in the brain: differences between linear and macrocyclic gadolinium based contrast agents in a mouse model. Br J Radiol 89(1066):20160509. doi:10.1259/bjr.20160509

    Article  PubMed  Google Scholar 

  65. Smith AP, Marino M, Roberts J, Crowder JM, Castle J, Lowery L, Morton C, Hibberd MG, Evans PM (2016) Clearance of gadolinium from the brain with no pathologic effect after repeated administration of gadodiamide in healthy rats: an analytical and histologic study. Radiology. doi:10.1148/radiol.2016160905

    Google Scholar 

  66. Tweedle MF, Wedeking P, Kumar K (1995) Biodistribution of radiolabeled, formulated gadopentetate, gadoteridol, gadoterate, and gadodiamide in mice and rats. Invest Radiol 30(6):372–380

    Article  CAS  PubMed  Google Scholar 

  67. Hirano S, Suzuki KT (1996) Exposure, metabolism, and toxicity of rare earths and related compounds. Environ Health Perspect 104(Suppl 1):85–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Darrah TH, Prutsman-Pfeiffer JJ, Poreda RJ, Ellen Campbell M, Hauschka PV, Hannigan RE (2009) Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics 1(6):479–488. doi:10.1039/b905145g

    Article  CAS  PubMed  Google Scholar 

  69. Gibby WA, Gibby KA (2004) Comparison of Gd DTPA-BMA (Omniscan) versus Gd HP-DO3A (ProHance) retention in human bone tissue by inductively coupled plasma atomic emission spectroscopy. Investig Radiol 39(3):138–142

    Article  Google Scholar 

  70. White GW, Gibby WA, Tweedle MF (2006) Comparison of Gd(DTPA-BMA) (Omniscan) versus Gd(HP-DO3A) (ProHance) relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy. Investig Radiol 41(3):272–278. doi:10.1097/01.rli.0000186569.32408.95

    Article  Google Scholar 

  71. Abraham JL, Thakral C, Skov L, Rossen K, Marckmann P (2008) Dermal inorganic gadolinium concentrations: evidence for in vivo transmetallation and long-term persistence in nephrogenic systemic fibrosis. Br J Dermatol 158(2):273–280. doi:10.1111/j.1365-2133.2007.08335.x

    Article  CAS  PubMed  Google Scholar 

  72. Birka M, Wentker KS, Lusmoller E, Arheilger B, Wehe CA, Sperling M, Stadler R, Karst U (2015) Diagnosis of nephrogenic systemic fibrosis by means of elemental bioimaging and speciation analysis. Anal Chem 87(6):3321–3328. doi:10.1021/ac504488k

    Article  CAS  PubMed  Google Scholar 

  73. Christensen KN, Lee CU, Hanley MM, Leung N, Moyer TP, Pittelkow MR (2011) Quantification of gadolinium in fresh skin and serum samples from patients with nephrogenic systemic fibrosis. J Am Acad Dermatol 64(1):91–96. doi:10.1016/j.jaad.2009.12.044

    Article  CAS  PubMed  Google Scholar 

  74. Grobner T (2006) Gadolinium–a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21(4):1104–1108. doi:10.1093/ndt/gfk062

    Article  CAS  PubMed  Google Scholar 

  75. Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, Thomsen HS (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17(9):2359–2362. doi:10.1681/ASN.2006060601

    Article  PubMed  Google Scholar 

  76. Sanyal S, Marckmann P, Scherer S, Abraham JL (2011) Multiorgan gadolinium (Gd) deposition and fibrosis in a patient with nephrogenic systemic fibrosis–an autopsy-based review. Nephrol Dial Transplant 26(11):3616–3626. doi:10.1093/ndt/gfr085

    Article  CAS  PubMed  Google Scholar 

  77. Roberts DR, Lindhorst SM, Welsh CT, Maravilla KR, Herring MN, Braun KA, Thiers BH, Davis WC (2016) High levels of gadolinium deposition in the skin of a patient with normal renal function. Invest Radiol 51(5):280–289. doi:10.1097/RLI.0000000000000266

    CAS  PubMed  Google Scholar 

  78. Boyd AS, Sanyal S, Abraham JL (2008) Gadolinium is not deposited in the skin of patients with normal renal function after exposure to gadolinium-based contrast agents. J Am Acad Dermatol 59(2):356–358. doi:10.1016/j.jaad.2008.01.025

    Article  PubMed  Google Scholar 

  79. Bussi S, Fouillet X, Morisetti A (2007) Toxicological assessment of gadolinium release from contrast media. Exp Toxicol Pathol 58(5):323–330. doi:10.1016/j.etp.2006.09.003

    Article  CAS  PubMed  Google Scholar 

  80. Sieber MA, Lengsfeld P, Frenzel T, Golfier S, Schmitt-Willich H, Siegmund F, Walter J, Weinmann HJ, Pietsch H (2008) Preclinical investigation to compare different gadolinium-based contrast agents regarding their propensity to release gadolinium in vivo and to trigger nephrogenic systemic fibrosis-like lesions. Eur Radiol 18(10):2164–2173. doi:10.1007/s00330-008-0977-y

    Article  PubMed  Google Scholar 

  81. Wang YX, Schroeder J, Siegmund H, Idee JM, Fretellier N, Jestin-Mayer G, Factor C, Deng M, Kang W, Morcos SK (2015) Total gadolinium tissue deposition and skin structural findings following the administration of structurally different gadolinium chelates in healthy and ovariectomized female rats. Quant Imaging Med Surg 5(4):534–545. doi:10.3978/j.issn.2223-4292.2015.05.03

    PubMed  PubMed Central  Google Scholar 

  82. Semelka RC, Commander CW, Jay M, Burke LM, Ramalho M (2016) Presumed gadolinium toxicity in subjects with normal renal function: a report of 4 cases. Invest Radiol 51(10):661–665. doi:10.1097/RLI.0000000000000318

    Article  CAS  PubMed  Google Scholar 

  83. Semelka RC, Ramalho J, Vakharia A, AlObaidy M, Burke LM, Jay M, Ramalho M (2016) Gadolinium deposition disease: initial description of a disease that has been around for a while. Magn Reson Imaging 34(10):1383–1390. doi:10.1016/j.mri.2016.07.016

    Article  CAS  PubMed  Google Scholar 

  84. Semelka RC, Ramalho M, AlObaidy M, Ramalho J (2016) Gadolinium in humans: a family of disorders. AJR Am J Roentgenol 207(2):229–233. doi:10.2214/AJR.15.15842

    Article  PubMed  Google Scholar 

  85. Burke LM, Ramalho M, AlObaidy M, Chang E, Jay M, Semelka RC (2016) Self-reported gadolinium toxicity: a survey of patients with chronic symptoms. Magn Reson Imaging 34(8):1078–1080. doi:10.1016/j.mri.2016.05.005

    Article  CAS  PubMed  Google Scholar 

  86. Gathings RM, Reddy R, Santa Cruz D, Brodell RT (2015) Gadolinium-associated plaques: a new, distinctive clinical entity. JAMA Dermatol 151(3):316–319. doi:10.1001/jamadermatol.2014.2660

    Article  PubMed  Google Scholar 

  87. Williams SGU (2014) Gadolinium toxicity: a survey of the chronic effects of retained gadolinium from contrast MRIs. https://gdtoxicity.files.wordpress.com/2014/09/gd-symptom-survey.pdf. Accessed 31 May 2016

  88. Gadolinium Toxicity website. www.gadoliniumtoxicity.com. Accessed 10 Jan 2017

  89. Arsenault TM, King BF, Marsh JW Jr, Goodman JA, Weaver AL, Wood CP, Ehman RL (1996) Systemic gadolinium toxicity in patients with renal insufficiency and renal failure: retrospective analysis of an initial experience. Mayo Clin Proc 71(12):1150–1154. doi:10.1016/S0025-6196(11)64695-8

    Article  CAS  PubMed  Google Scholar 

  90. Hui FK, Mullins M (2009) Persistence of gadolinium contrast enhancement in CSF: a possible harbinger of gadolinium neurotoxicity? AJNR Am J Neuroradiol 30(1):E1. doi:10.3174/ajnr.A1205

    Article  CAS  PubMed  Google Scholar 

  91. Maramattom BV, Manno EM, Wijdicks EF, Lindell EP (2005) Gadolinium encephalopathy in a patient with renal failure. Neurology 64(7):1276–1278. doi:10.1212/01.WNL.0000156805.45547.6E

    Article  PubMed  Google Scholar 

  92. Miller JH, Hu HH, Pokorney A, Cornejo P, Towbin R (2015) MRI brain signal intensity changes of a child during the course of 35 gadolinium contrast examinations. Pediatrics 136(6):e1637–1640. doi:10.1542/peds.2015-2222

    Article  PubMed  Google Scholar 

  93. Balint B, Bhatia KP (2016) T1-weighted basal ganglia hyperintensities due to gadolinium deposition—a cautionary note. Parkinsonism Relat Disord 32:135–136. doi:10.1016/j.parkreldis.2016.09.017

    Article  PubMed  Google Scholar 

  94. Welk B, McArthur E, Morrow SA, MacDonald P, Hayward J, Leung A, Lum A (2016) Association between gadolinium contrast exposure and the risk of parkinsonism. JAMA 316(1):96–98. doi:10.1001/jama.2016.8096

    Article  PubMed  Google Scholar 

  95. US Food and Drug Administration FDA evaluating the risk of brain deposits with repeated use of gadolinium-based contrast agents for magnetic resonance imaging (MRI). www.fda.gov/downloads/Drugs/DrugSafety/UCM455390.pdf. Accessed 28 June 2016

  96. Malayeri AA, Brooks KM, Bryant LH, Evers R, Kumar P, Reich DS, Bluemke DA (2016) National Institutes of health perspective on reports of gadolinium deposition in the brain. J Am Coll Radiol 13(3):237–241. doi:10.1016/j.jacr.2015.11.009

    Article  PubMed  PubMed Central  Google Scholar 

  97. AuntMinnieEurope.com EMA continues investigation of gadolinium contrast agents. http://www.auntminnieeurope.com/index.aspx?sec=ser&sub=def&pag=dis&ItemID=613908. Accessed 18 Jan 2017

  98. Quattrocchi CC, van der Molen AJ (2017) Gadolinium retention in the body and brain: is It time for an international joint research effort? Radiology 282(1):12–16. doi:10.1148/radiol.2016161626

    Article  PubMed  Google Scholar 

  99. Caranci F, Tedeschi E, Leone G, Reginelli A, Gatta G, Pinto A, Squillaci E, Briganti F, Brunese L (2015) Errors in neuroradiology. Radiol Med 120(9):795–801. doi:10.1007/s11547-015-0564-7

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Tedeschi.

Ethics declarations

Funding

This study received no funding.

Conflict of interest

All authors (Enrico Tedeschi, Ferdinando Caranci, Flavio Giordano, Valentina Angelini, Sirio Cocozza and Arturo Brunetti) declare that they have no conflict of interest.

Informed consent

The MRI scans shown in the figures were retrospectively selected among MRI studies previously performed according to clinical indications, with informed consent obtained from all individual participants.

Ethical statements

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tedeschi, E., Caranci, F., Giordano, F. et al. Gadolinium retention in the body: what we know and what we can do. Radiol med 122, 589–600 (2017). https://doi.org/10.1007/s11547-017-0757-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-017-0757-3

Keywords

Navigation