Skip to main content

Advertisement

Log in

Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Dermaseptin B1 is a potent cationic antimicrobial peptide found in skin secretions of the arboreal frog Phyllomedusa bicolor. A synthetic derivative of dermaseptin B1, MsrA2 (N-Met-dermaseptin B1), elicited strong antimicrobial activities against various phytopathogenic fungi and bacteria in vitro. To assess its potential for plant protection, MsrA2 was expressed at low levels (1–5 μg/g of fresh tissue) in the transgenic potato (Solanum tuberosum L.) cv. Desiree. Stringent challenges of these transgenic potato plants with a variety of highly virulent fungal phytopathogens—Alternaria, Cercospora, Fusarium, Phytophthora, Pythium, Rhizoctonia and Verticillium species—and with the bacterial pathogen Erwinia carotovora demonstrated that the plants had an unusually broad-spectrum and powerful resistance to infection. MsrA2 profoundly protected both plants and tubers from diseases such as late blight, dry rot and pink rot and markedly extended the storage life of tubers. Due to these properties in planta, MsrA2 is proposed as an ideal antimicrobial peptide candidate to significantly increase resistance to phytopathogens and improve quality in a variety of crops worldwide with the potential to obviate fungicides and facilitate storage under difficult conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu W-L, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Google Scholar 

  • Baghian A, Jaynes J, Enright F, Kousolas KG (1997) An amphipathic alpha-helical synthetic peptide analogue of melittin inhibits herpes simplex virus-1 (HSV-1)-induced cell fusion and virus spread. Peptides 18:177–183

    Article  CAS  PubMed  Google Scholar 

  • Banzet N, Latorse M-P, Bulet P, Francois E, Derpierre C, Dubald M (2002) Expression of insect cysteine-rich antifungal peptides in transgenic tobacco enhances resistance to a fungal disease. Plant Sci 162:995–1006

    Article  CAS  Google Scholar 

  • Belaid A, Aouni M, Khelifa R, Trabelsi A, Jemmali M, Hani K (2002) In vitro antiviral activity of dermaseptins against herpes simplex virus type 1. J Med Virol 66:229–234

    Article  CAS  PubMed  Google Scholar 

  • Biezen E van der (2001) Quest for antimicrobial genes to engineer disease-resistant crops. Trends Plant Sci 6:89–91

    Article  PubMed  Google Scholar 

  • Boyd AEW (1972) Potato storage diseases. Rev Plant Pathol 51:297–321

    Google Scholar 

  • Campbell MA, Fitzgerald HA, Ronald PC (2002) Engineering pathogen resistance in crop plants. Transgenic Res 10:1–15

    Google Scholar 

  • Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA (2003) MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587–596

    Google Scholar 

  • Chernysh S, Kim SI, Bekker G, Pleskach VA, Filatova NA, Anikin VB, Platonov VG, Bulet P (2002) Antiviral and antitumor peptides from insects. Proc Natl Acad Sci USA 99:12628–12632

    Article  CAS  PubMed  Google Scholar 

  • Cohn J, Sessa G, Martin GB (2001) Innate immunity in plants. Curr Opin Immunol 13:55–62

    Article  CAS  PubMed  Google Scholar 

  • Coote PJ, Holyoak CD, Bracey D, Ferdinando DP, Pearce JA (1998) Inhibitory action of the amphibian skin peptide dermaseptin S3 on S. cerevisiae. Antimicrob Agents Chemother 42:2160–2170

    CAS  PubMed  Google Scholar 

  • Dagan A, Efron L, Gaidukov M, Mor A, Ginsburg H (2002) In vitro antiplasmodium effects of dermaseptin S4 derivatives. Antimicrob Agents Chemother 46:1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Datla RSS, Bekkaoui F, Hammerlindl JK, Pilate G, Dunstan DI, Crosby WL (1993) Improved high-level constitutive foreign gene expression in plants using an AMV RNA4 untranslated leader sequence. Plant Sci 94:139–149

    Article  CAS  Google Scholar 

  • De Block M (1988) Genotype-independent leaf disc transformation of potato (Solanum tuberosum) using Agrobacterium tumefaciens. Theor Appl Genet 76:767–774

    Article  Google Scholar 

  • De Gray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852–862

    Article  CAS  PubMed  Google Scholar 

  • De Lucca AJ, Bland JM, Jacks TJ, Grimm C, Walsh TJ (1998) Fungicidal and binding properties of the natural peptides cecropin B and dermaseptin. Med Mycol 36:291–298

    Article  CAS  PubMed  Google Scholar 

  • Epple P, Apel K, Bohlmann H (1997) Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Plant Cell 9:509–520

    Article  CAS  PubMed  Google Scholar 

  • Fagoaga C, Rodrigo I, Conejero V, Hinarejos C, Tuset JJ, Arnau J, Pina JA, Navarro L, Pena L (2001) Increased tolerance to Phytophthora citrophthora in transgenic orange plants expressing a tomato pathogenesis related protein PR-5. Mol Breed 7:175–185

    Article  CAS  Google Scholar 

  • Fischer KS, Barton J, Khush GS, Leung H, Cantrell R (2000) Collaboration in rice. Science 290:279–280

    Article  CAS  PubMed  Google Scholar 

  • Fleury Y, Vouille V, Beven L, Amiche M, Wroblewski H, Delfour A, Nicolas P (1998) Synthesis, antimicrobial activity and gene structure of a novel member of the dermaseptin B family. Biochim Biophys Acta 1396:228–236

    CAS  PubMed  Google Scholar 

  • Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA 98:373–378

    Article  CAS  PubMed  Google Scholar 

  • Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang JH, Rommens CMT (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18:1307–1310

    Article  CAS  PubMed  Google Scholar 

  • Guillemot D (1999) Antibiotic use in human and bacterial resistance. Curr Opin Microbiol 2:494–498

    Google Scholar 

  • Hancock REW, Diamond D (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 8:402–410

    Article  CAS  PubMed  Google Scholar 

  • Hancock REW, Scott MG (2000) The role of antimicrobial peptides in animal defense. Proc Natl Acad Sci USA 97:8856–8861

    Article  CAS  PubMed  Google Scholar 

  • Hancock REW, Falla T, Brown M (1995) Cationic bactericidal peptides. Adv Microbiol Physiol 37:135–175

    CAS  Google Scholar 

  • Hernandez C, Mor A, Dagger F, Nicolas P, Hernandez A, Bernadetti EL, Dunia I (1992) Functional and structural damages in Leishmania mexicana exposed to the cationic peptide dermaseptin. Eur J Cell Biol 59:414–424

    CAS  PubMed  Google Scholar 

  • Hoffman T, Schmidt JS, Zheng X, Bent AF (1999) Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol 119:935–950

    Article  CAS  PubMed  Google Scholar 

  • Holsters M, de Waele D, Depicker A, Messens E, van Montagu M, Schell J (1978) Transfection and transformation of A. tumefaciens. Mol Gen Genet 163:181–187

    Article  CAS  PubMed  Google Scholar 

  • Hwang PM, Vogel HJ (1998) Structure–function relationship of antimicrobial peptides. Biochem Cell Biol 76:235–246

    Article  CAS  PubMed  Google Scholar 

  • James WC, Teng PS, Nutter WF (1990) Estimated losses of crops from plant pathogens. In: Pimentel D (ed) CRC handbook of pest management 1. CRC Press, Boca Raton, pp 5–50

    Google Scholar 

  • Jutglar L, Borrell JI, Ausio J (1991) Primary, secondary, and tertiary structure of the core of a histone H1-like protein from the sperm of Mytilus. J Biol Chem 266:8184–8191

    CAS  PubMed  Google Scholar 

  • Kadish D, Cohen Y (1992) Overseasoning of metalaxyl-sensitive and metalaxyl-resistant isolates of Phytophthora infestans in potato tubers. Phytopathology 82:887–889

    CAS  Google Scholar 

  • Kanzaki H, Nirasawa S, Saitoh H, Ito M, Nishihara M, Terauchi R, Nakamura I (2002) Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet 105:809–814

    Article  CAS  PubMed  Google Scholar 

  • Krugliak M, Feder R, Zolotarev VY, Gaidukov L, Dagan A, Ginsburg H, Mor A (2000) Antimalarial activity of dermaseptin S4 derivatives. Antimicrob Agents Chemother 44:2442–2451

    Article  CAS  PubMed  Google Scholar 

  • Marcos JF, Beachy RN, Houghten RA, Blondelle SE, Perez-Paya E (1995) Inhibition of plant virus infection by melittin. Proc Natl Acad Sci USA 92:12466–12469

    CAS  PubMed  Google Scholar 

  • Melchers LS, Stuiver MH (2000) Novel genes for disease resistant breeding. Curr Opin Plant Biol 3:147–152

    Google Scholar 

  • Mitsuhara I, Matsufuru H, Ohshima M, Kaku H, Nakajima Y, Murai N, Natori S, Ohashi Y (2000) Induced expression of sarcotoxin IA enhanced host resistance against both bacterial and fungal pathogens in transgenic tobacco. Mol Plant Microbe Interact 13:860–868

    CAS  PubMed  Google Scholar 

  • Mor A, Nicolas P (1994a) Isolation and structure of novel defensive peptides from frog skin. Eur J Biochem 219:145–154

    Google Scholar 

  • Mor A, Nicolas P (1994b) The NH2-terminal α-helical domain 1–18 of dermaseptins is responsible for antimicrobial activity. J Biol Chem 269:1934–1939

    Google Scholar 

  • Mor A, Nguyen VH, Delfour A, Migliore-Samour D, Nicolas P (1991) Isolation, amino acid sequence, and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin. Biochemistry 30:8824–8830

    Google Scholar 

  • Mor A, Amiche M, Nicolas P (1994a) Structure, synthesis, and activity of dermaseptin B, a novel vertebrate defensive peptide from frog skin: relationship with adenoregulin. Biochemistry 33:6642–6650

    Article  CAS  PubMed  Google Scholar 

  • Mor A, Hani K, Nicolas P (1994b) The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J Biol Chem 269:31635–31641

    Google Scholar 

  • Nanon-Venezia S, Feder R, Gaidukov L, Carmeli Y, Mor A (2002) Antibacterial properties of dermaseptin S4 derivatives with in vivo activity. Antimicrob Agents Chemother 46:689–694

    Article  PubMed  Google Scholar 

  • Nir-Paz R, Prevost M-C, Nicolas P, Blanchard A, Wroblewski H (2002) Susceptibilities of Mycoplasma fermentas and Mycoplasma hyorhinis to membrane-active peptides and enrofloxacin in human tissue cell cultures. Antimicrob Agents Chemother 46:1218–1225

    Article  CAS  PubMed  Google Scholar 

  • Oh H, Hedberg M, Wade D, Edlund C (2000) Activities of synthetic hybrid peptides against anaerobic bacteria: aspects of methodology and stability. Antimicrob Agents Chemother 44:68–72

    CAS  PubMed  Google Scholar 

  • Ok SL, Boyoung L, Nammi P, Ja CK, Young HK, Theerta PD, Chandrakant K, Hyun JC, Boyoung RJ, Doh HK, Jaesung N, Jae-Gil Y, Sang-Soo K, Moo JC, Dae-Jin Y (2003) Pn-AMPs, the hevein-like proteins from Pharbitis nil confers disease resistance against phytopathogenic fungi in tomato, Lycopersicum esculentum. Phytochemistry 6:1073–1079

    Google Scholar 

  • Ortiz R (2001) The state of the use of potato genetic diversity. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crops production. CABI/FAO, New York, pp 81–200

    Google Scholar 

  • Osusky M, Zhou G, Osuska L, Hancock REW, Kay WW, Misra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol 18:1162–1166

    Article  CAS  PubMed  Google Scholar 

  • Osusky M, Osuska L, Hancock REW, Kay WW, Misra S (2004) Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Res 13:181–190

    Article  CAS  PubMed  Google Scholar 

  • Ponti D, Mangoni ML, Mignogna G, Simmaco M, Barra D (2003) An amphibian antimicrobial peptide variant expressed in Nicotiniana tabacum confers resistance to phytopathogens. Biochem J 370:121–127

    Article  CAS  PubMed  Google Scholar 

  • Punja ZK (2001) Genetic engineering of plants to enhance resistance to fungal pathogens—a review of progress and future prospects. Can J Plant Pathol 23:216–235

    CAS  Google Scholar 

  • Rich AE (1991) Plant diseases. In: Pimentel D (ed) CRC handbook of pest management 3. CRC Press, Boca Raton, pp 623–675

    Google Scholar 

  • Rommens CM, Kishore GM (2000) Exploiting the full potential of disease-resistance genes for agricultural use. Curr Opin Biotechnol 11:120–125

    Article  CAS  PubMed  Google Scholar 

  • Salas B, Stack RV, Secor GA, Gudmestad NC (2000) The effect of wounding, temperature, and inoculum on the development of pink rot of potatoes caused by Phytophthora erythroseptica. Plant Dis 84:1327–1333

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sharma A, Sharma R, Imamura M, Yamakawa M, Machii H (2000) Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Lett 484:7–11

    Article  CAS  PubMed  Google Scholar 

  • Shattock RC (2002) Phytophthora infestans: populations, pathogenicity and phenylamides. Pest Manage Sci:58:944–950

    Article  CAS  Google Scholar 

  • Staub T (1991) Fungicide resistance: practical experience with anti-resistance strategies and the role of integrated use. Annu Rev Phytopathol 29:421–432

    Article  CAS  Google Scholar 

  • Strahilevitz J, Mor A, Nicolas P, Shai Y (1994) Spectrum of antimicrobial activity and assembly of dermaseptin-b and its precursor form in phospholipid membranes. Biochemistry 33:10951–10960

    Article  CAS  PubMed  Google Scholar 

  • Thomzik JE, Stenzel K, Stocker R, Schreier PH, Hain R, Stahl DJ (1997) Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol 51:265–278

    Article  CAS  Google Scholar 

  • Vanhoye D, Bruston F, Nicolas P, Amiche M (2003) Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-old ancestral precursor with a conserved signal peptide but a hypermutable antimicrobial domain. Eur J Biochem 270:2068–2081

    Google Scholar 

  • Wachinger M, Kleinschmidt A, Winder D, von Pechmann N, Ludvigsen A, Neumann M, Holle R, Salmons B, Erfle V, Brack-Werner R (1998) Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol 79:731–740

    CAS  PubMed  Google Scholar 

  • Yang K-Y, Liu Y, Zhang S (2001) Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci USA 98:741–746

    Article  CAS  PubMed  Google Scholar 

  • Yaron S, Rydlo T, Schachar D, Mor A (2003) Activity of dermaseptin K4-S4 against foodborne pathogens. Peptides 24:1815–1821

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Chen THH, Li PH (1996) Analysis of late-blight disease resistance and freezing tolerance in transgenic potato plants expressing sense and antisense genes for an osmotin-like protein. Planta 189:70–77

    Google Scholar 

Download references

Acknowledgements

We thank X. Yu, B. Forward, T. Stevenson and B. Allen for expert technical assistance, Dr. Zamir Punja (Simon Fraser University, Burnaby, B.C., Canada) and Dr. Harold Platt (Agriculture & Agri-Food Canada) for providing fungal pathogens. This work was funded by a grant to SM from the Canadian Bacterial Diseases Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Misra.

Additional information

Communicated by L. Willmitzer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osusky, M., Osuska, L., Kay, W. et al. Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2. Theor Appl Genet 111, 711–722 (2005). https://doi.org/10.1007/s00122-005-2056-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-2056-y

Keywords

Navigation