Skip to main content
Log in

Sequential gelation of tyramine-substituted hyaluronic acid hydrogels enhances mechanical integrity and cell viability

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Tyramine-substituted hyaluronic acid (HA–Tyr) hydrogels formed by the oxidative coupling reaction of hydrogen peroxide (H2O2) and horseradish peroxidase (HRP) have been used for cellular encapsulation and protein delivery. Crosslinking density and gelation time can be tuned by altering the H2O2 and HRP concentrations. Previous studies using HA–Tyr constructs report significant mechanical degradation after 21 days of culture. In this work, exogenous supplementation of HRP after initial gelation resulted in superior mechanical properties in acellular hydrogels and improved viability and proliferation in cell-laden constructs. Swelling of the acellular hydrogels was prevented in the samples receiving exogenous HRP. Monolayer studies showed no negative effect of relevant HRP concentrations on the viability of human adipose-derived stem cells (hASCs) and improved the viability of hASCs cultured with HRP and H2O2 compared to H2O2 alone. Taken together, this study demonstrates that HA–Tyr hydrogel properties could be modified by exogenous supplementation of HRP to tune scaffold degradation and improve cell viability by mitigating the negative effects of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abu-Hakmeh AE, Wan LQ (2014) High-throughput cell aggregate culture for stem cell chondrogenesis. In: Vunjak-Novakovic G, Turksen K (eds) Biomimetics and stem cells. Springer, pp 11–19

  2. Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195(1):133–140

    CAS  PubMed  Google Scholar 

  3. Bian L, Hou C, Tous E, Rai R, Mauck RL, Burdick JA (2013) The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy. Biomaterials 34(2):413–421

    Article  CAS  PubMed  Google Scholar 

  4. Bulpitt P, Aeschlimann D (1999) New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J Biomed Mater Res 47(2):152–169

    Article  CAS  PubMed  Google Scholar 

  5. Burdick JA, Chung C, Jia X, Randolph MA, Langer R (2005) Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6(1):386–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Campo GM, Avenoso A, Nastasi G, Micali A, Prestipino V, Vaccaro M, Ascola A, Calatroni A (1812) Campo S (2011) Hyaluronan reduces inflammation in experimental arthritis by modulating TLR-2 and TLR-4 cartilage expression. Biochim Biophys Acta (BBA) Mol Basis Dis 9:1170–1181

    Google Scholar 

  7. Chattopadhyay K, Mazumdar S (2000) Structural and conformational stability of horseradish peroxidase: effect of temperature and pH. Biochemistry 39(1):263–270

    Article  CAS  PubMed  Google Scholar 

  8. Chin L, Calabro A, Walker E, Derwin KA (2012) Mechanical properties of tyramine substituted-hyaluronan enriched fascia extracellular matrix. J Biomed Mater Res Part A 100A(3):786–793

    Article  CAS  Google Scholar 

  9. Chung C, Burdick JA (2008) Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Eng Part A 15(2):243–254

    Article  Google Scholar 

  10. Collis L, Hall C, Lange L, Ziebell M, Prestwich R, Turley E (1998) Rapid hyaluronan uptake is associated with enhanced motility: implications for an intracellular mode of action. FEBS Lett 440(3):444–449

    Article  CAS  PubMed  Google Scholar 

  11. Darr A, Calabro A (2009) Synthesis and characterization of tyramine-based hyaluronan hydrogels. J Mater Sci Mater Med 20(1):33–44

    Article  CAS  PubMed  Google Scholar 

  12. Digel I, Artmann AT, Nishikawa K, Cook M, Kurulgan E, Artmann GM (2005) Bactericidal effects of plasma-generated cluster ions. Med Biol Eng Comput 43(6):800–807

    Article  CAS  PubMed  Google Scholar 

  13. Dowthwaite GP, Edwards JC, Pitsillides AA (1998) An essential role for the interaction between hyaluronan and hyaluronan binding proteins during joint development. J Histochem Cytochem 46(5):641–651

    Article  CAS  PubMed  Google Scholar 

  14. Embry JJ, Knudson W (2003) G1 domain of aggrecan cointernalizes with hyaluronan via a CD44-mediated mechanism in bovine articular chondrocytes. Arthritis Rheum 48(12):3431–3441

    Article  CAS  PubMed  Google Scholar 

  15. Erickson IE, Kestle SR, Zellars KH, Farrell MJ, Kim M, Burdick JA, Mauck RL (2012) High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties. Acta Biomater 8(8):3027–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fraser J, Laurent T, Laurent U (1997) Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 242(1):27–33

    Article  CAS  PubMed  Google Scholar 

  17. Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G (2007) Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA 104(27):11298–11303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Halvorsen Y-DC, Franklin D, Bond AL, Hitt DC, Auchter C, Boskey AL, Paschalis EP, Wilkison WO, Gimble JM (2001) Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng 7(6):729–741

    Article  CAS  PubMed  Google Scholar 

  19. Horton AA, Fairhurst S, Bus JS (1987) Lipid peroxidation and mechanisms of toxicity. Crit Rev Toxicol 18(1):27–79

    Article  CAS  PubMed  Google Scholar 

  20. Jones CW (1999) Applications of hydrogen peroxide and derivatives. Royal Society of Chemistry, Cambridge

    Google Scholar 

  21. Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Pathophysiology 7(3):153–163

    Article  CAS  PubMed  Google Scholar 

  22. Kim Y-J, Sah RLY, Doong J-YH, Grodzinsky AJ (1988) Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 174(1):168–176

    Article  CAS  PubMed  Google Scholar 

  23. Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G, Noh I, Lee SH, Park Y, Sun K (2007) Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28(10):1830–1837

    Article  CAS  PubMed  Google Scholar 

  24. Kim J, Yang H, Cho T, Lee S, Park Y, Kim H, Kim I, Y-k Seo, Hwang S, Kim S (2013) Enhanced regeneration of rabbit mandibular defects through a combined treatment of electrical stimulation and rhBMP-2 application. Med Biol Eng Comput 51(12):1339–1348

    Article  PubMed  Google Scholar 

  25. Kurisawa M, Lee F, Wang L-S, Chung JE (2010) Injectable enzymatically crosslinked hydrogel system with independent tuning of mechanical strength and gelation rate for drug delivery and tissue engineering. J Mater Chem 20(26):5371–5375

    Article  CAS  Google Scholar 

  26. Laurent TC, Laurent U, Fraser J (1995) Functions of hyaluronan. Ann Rheum Dis 54(5):429–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee F, Chung JE, Kurisawa M (2008) An injectable enzymatically crosslinked hyaluronic acid–tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter 4(4):880–887

    Article  CAS  Google Scholar 

  28. Lee F, Chung JE, Kurisawa M (2009) An injectable hyaluronic acid–tyramine hydrogel system for protein delivery. J Control Release 134(3):186–193

    Article  CAS  PubMed  Google Scholar 

  29. LeRoux MA, Guilak F, Setton LA (1999) Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. J Biomed Mater Res 47(1):46–53

    Article  CAS  PubMed  Google Scholar 

  30. Luo Y, Kirker KR, Prestwich GD (2000) Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release 69(1):169–184

    Article  CAS  PubMed  Google Scholar 

  31. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  32. Schumb WC (1949) Stability of concentrated hydrogen peroxide solutions. Ind Eng Chem 41(5):992–1003

    Article  CAS  Google Scholar 

  33. Sies H (1986) Biochemistry of oxidative stress. Angew Chem Int Ed 25(12):1058–1071

    Article  Google Scholar 

  34. Toh WS, Lim TC, Kurisawa M, Spector M (2012) Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials 33(15):3835–3845

    Article  CAS  PubMed  Google Scholar 

  35. Ushio-Fukai M, Alexander RW, Akers M, Griendling KK (1998) p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II: role in vascular smooth muscle cell hypertrophy. J Biol Chem 273(24):15022–15029

    Article  CAS  PubMed  Google Scholar 

  36. Wan LQ, Jiang J, Arnold DE, Guo XE, Lu HH, Mow VC (2008) Calcium concentration effects on the mechanical and biochemical properties of chondrocyte-alginate constructs. Cell Mol Bioeng 1(1):93–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu F, Cao X, Li Y, Zeng L, Zhu J, Wang G, Chen X (2014) Diels–Alder crosslinked HA/PEG hydrogels with high elasticity and fatigue resistance for cell encapsulation and articular cartilage tissue repair. Polym Chem 5(17):5116–5123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Leo Q. Wan is a Pew Scholar in Biomedical Sciences, supported by the Pew Charitable Trusts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Q. Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Hakmeh, A., Kung, A., Mintz, B.R. et al. Sequential gelation of tyramine-substituted hyaluronic acid hydrogels enhances mechanical integrity and cell viability. Med Biol Eng Comput 54, 1893–1902 (2016). https://doi.org/10.1007/s11517-016-1474-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1474-0

Keywords

Navigation