Skip to main content
Log in

Effects of CT resolution and radiodensity threshold on the CFD evaluation of nasal airflow

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The article focuses on the robustness of a CFD-based procedure for the quantitative evaluation of the nasal airflow. CFD ability to yield robust results with respect to the unavoidable procedural and modeling inaccuracies must be demonstrated to allow this tool to become part of the clinical practice in this field. The present article specifically addresses the sensitivity of the CFD procedure to the spatial resolution of the available CT scans, as well as to the choice of the segmentation level of the CT images. We found no critical problems concerning these issues; nevertheless, the choice of the segmentation level is potentially delicate if carried out by an untrained operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arbour P, Bilgen E, Girardin M (1985) Experimental study of nasal velocity fields in a human nasal fossa by laser anemometry. Rhinology 23:201–207

    CAS  PubMed  Google Scholar 

  2. Chen X, Lee H, Chong V, Wang D (2009) Assessment of septal deviation effects on nasal air flow: a computational fluid dynamics model. Am Laryngol Rhinol Otol Soc 119:1730–1736

    Google Scholar 

  3. Choi J, Tawhai MH, Hoffman EA, Lin C-L (2009) On intra- and inter-subject variabilities of airflow in the human lungs. Phys Fluids 21:101901

    Article  Google Scholar 

  4. Clements PA, Gortds F (2005) Standardisation Committee on Objective Assessment of the Nasal Airway, IRS, and ERS Consensus report on acoustic rhinometry and rhinomanometry. Rhynology 43(3):169–179

    Google Scholar 

  5. Doorly D, Taylor D, Gambaruto A, Schroter R, Tolley N (2008) Nasal architecture: form and flow. Philos Trans R Soc 366:3225–3246

    Article  CAS  Google Scholar 

  6. Elad D, Liebenthal R, Wenig B, Einag S (1993) Analysis of air flow pattern in the human nose. Med Bio Eng Comput 31:585–592

    Article  CAS  Google Scholar 

  7. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller J, Pieper S, Kikinis R (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magnetic Resonance Imaging p. 22770690. http://www.arxiv.org

  8. Ferziger JH, Peric M (2013) Computational Methods for Fluid Dynamics. Springer, Berlin

    Google Scholar 

  9. Frank DO, Zanation AM, Dhandha VH, McKinney KA, Fleischman GM, Ebert CS Jr, Senior BA, Kimbell JS (2013) Quantification of airflow into the maxillary sinuses before and after functional endoscopic sinus surgery. Int Forum Allergy Rhinol. 10:834–40

    Article  Google Scholar 

  10. Hahn I, Scherer P, Mozell M (1993) Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. J Appl Physiol 75:2273–2287

    CAS  PubMed  Google Scholar 

  11. Hörschler I, Schröder W, Meinke M (2010) On the assumption of steadiness of nasal cavity flow. Biomechanics 43:1081–1085

    Article  Google Scholar 

  12. Kleinstreuer C, Zhang Z (2010) Airflow and particle transport in the human respiratory system. Ann Rev Fluid Mech 42:301–334

    Article  Google Scholar 

  13. Leong S, Chen X, Lee H, Wang D (2010) A review of the implications of computational fluid dynamic studies on nasal airflow and physiology. J Rhinol 48:139–145

    CAS  Google Scholar 

  14. Martonen T, Quan L, Zhang Z, Musante C (2002) Flow simulation in the human upper respiratory tract. Cell Biochem Biophys 37:2736

    Article  Google Scholar 

  15. Menter F (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605

    Article  Google Scholar 

  16. Mihaescu M, Mylavarapu G, Gutmark EJ, Powell NB (2011) Large Eddy simulation of the pharyngeal airflow associated with Obstructive Sleep Apnea Syndrome at pre and post-surgical treatment. J Biomech 44(12):2221–2228

    Article  PubMed  Google Scholar 

  17. Mylavarapu G, Murugappan S, Mihaescu M, Kalra M, Khosla S, Gutmark E (2009) Validation of computational fluid dynamics methodology used for human upper airway flow simulations. J Biomech 42(10):1553–1559

    Article  PubMed  Google Scholar 

  18. Nathan A, Eccles R, Howarth P, Steinsvag S, Togias A (2005) Objective monitoring of nasal patency and nasal physiology in rhinitis. J Allergy Clin Immunol 115(3):S442–S459

    Article  PubMed  Google Scholar 

  19. Pötker DM, Smith TL (2007) Adult chronic rhinosinusitis: surgical outcomes and the role of endoscopic sinus surgery. Curr Opin Otolaryngol Head Neck Surg 15(1):6–9

    Article  Google Scholar 

  20. Pope S (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  21. Quadrio M, Pipolo C, Corti S, Lenzi R, Messina F, Pesci C, Felisati G (2013) Review of computational fluid dynamics in the assessment of nasal air flow and analysis of its limitations. Eur Arch Otorhinolaryngol. doi:10.1007/s00405-013-2742-3

    PubMed  Google Scholar 

  22. Rhee J, Pawar S, Garcia G, Kimbell J (2011) Toward personalized nasal surgery using computational fluid dynamics. Arch Facial Plast Surg E1–E6

  23. Schumacher M (2004) Nasal dyspnea: the place of rhinomanometry in its objective assessment. Am J Rhinol 18(1):41–46

    PubMed  Google Scholar 

  24. Shivakumar T, Sambandan AP (2011) Retrospective analysis of the effectiveness of functional endoscopic sinus surgery in the treatment of adult chronic rhinisinusitis refractory to medical treatment. Indian J Otolaryngol Head Neck Surg 63(4):321–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stewart M, Ferguson B, Fromer L (2010) Epidemiology and burden of nasal congestion. Int J Gen Med 3:37–45

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang D, Lee H, Gordon R (2012) Impacts of fluid dynamics simulation in study of nasal airflow physiology and pathophysiology in realistic human three-dimensional nose models. Clin Exp Otorhinolaryngol 5(4):181–187

    Article  CAS  PubMed Central  Google Scholar 

  27. Weller H, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys 12:620–631

    Article  Google Scholar 

  28. Xiong G, Zhan J, Zuo K, Li J, Rong L, Xu G (2008) Numerical flow simulation in the post-endoscopic sinus surgery nasal cavity. Med Bio Eng Comput 46:1161–1167

    Article  Google Scholar 

  29. Yin Y, Choi J, Hoffman EA, Tawhai MH, Lin C-L (2010) Simulation of pulmonary air flow with a subject-specific boundary condition. J Biomech 43(11):2159–2163

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yin Y, Choi J, Hoffman EA, Tawhai MH, Lin C-L (2013) A multi- scale MDCT image-based breathing lung model with time-varying regional ventilation. J Comput Phys 244:168–192

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhao K, Blacker K, Luo Y, Bryant B, Jiang J (2011) Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance. PLoS One 6(10):e24,618

    Article  CAS  Google Scholar 

  32. Zhao K, Dalton P, Yang G, Scherer P (2006) Numerical modeling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose. Chem Senses 31:107–118

    Article  PubMed  Google Scholar 

  33. Zhao K, Scherer P, Hajiloo S, Dalton P (2004) Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction. Chem Senses 29:365–379

    Article  PubMed  Google Scholar 

  34. Zhu J, Lim K, Thong K, Wang D, Lee H (2014) Assessment of airflow ventilation in human nasal cavity and maxillary sinus before and after targeted sinonasal surgery: a numerical case study. Respir Physiol Neurobiol 194:29–36

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Part of the calculations presented here has been carried out on the Lagrange supercomputer of the CINECA (formerly CILEA) computing center in Milano/Bologna, Italy. We thankfully acknowledge their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Quadrio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quadrio, M., Pipolo, C., Corti, S. et al. Effects of CT resolution and radiodensity threshold on the CFD evaluation of nasal airflow. Med Biol Eng Comput 54, 411–419 (2016). https://doi.org/10.1007/s11517-015-1325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1325-4

Keywords

Navigation