Skip to main content

Radiological Evaluation of Lower Airway Dimensions Deciding Ventilatory Dynamics: Can Radiologically Determined, Static Airway Structures Precisely Predict Ventilatory Dysfunction?

  • Chapter
  • First Online:
Structure-Function Relationships in Various Respiratory Systems

Abstract

Airway narrowing causes airflow limitation because of the increase in airway resistance during expiration. Radiological evaluation of airway narrowing during breath-hold has been widely performed for various respiratory diseases. In particular, bronchial asthma and chronic obstructive pulmonary disease (COPD) are major respiratory diseases that present with airflow limitations. Quantitative assessment using computed tomography (CT) images is key to evaluating airway lesions and airway narrowing in both clinical and research fields.

On CT images, airway wall thickening, and airway narrowing are evaluated with designated software; however, there are serious concerns about and limitations to the resolution of CT images. Ultra-high resolution CT (U-HRCT) is a promising variation of CT that could produce new findings to help deepen our understanding of respiratory diseases.

Moreover, for acquiring precise and meaningful measurements of airway dimensions in vivo, various new parameters, such as airway tree shape irregularity, airway visibility, and airway volume to lung volume ratio, have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McNamara AE, Müller NL, Okazawa M, Arntorp J, Wiggs BR, Paré PD. Airway narrowing in excised canine lungs measured by high-resolution computed tomography. J Appl Physiol. 1992;73:307–16.

    Article  CAS  Google Scholar 

  2. Niimi A, Matsumoto H, Amitani R, Nakano Y, Mishima M, Minakuchi M, Nishimura K, Itoh H, Izumi T. Airway wall thickness in asthma assessed by computed tomography. Relation to clinical indices. Am J Respir Crit Care Med. 2000;162:1518–23.

    Article  CAS  Google Scholar 

  3. Nakano Y, Muro S, Sakai H, Hirai T, Chin K, Tsukino M, Nishimura K, Itoh H, Paré PD, Hogg JC, Mishima M. Computed tomographic measurements of airway dimensions and emphysema in smokers. Correlation with lung function. Am J Respir Crit Care Med. 2000;162:1102–8.

    Article  CAS  Google Scholar 

  4. Kirby M, Tanabe N, Tan WC, Zhou G, Obeidat M, Hague CJ, Leipsic J, Bourbeau J, Sin DD, Hogg JC, Coxson HO, CanCOLD Collaborative Research Group, Canadian Respiratory Research Network. Total airway count on computed tomography and the risk of chronic obstructive pulmonary disease progression. Findings from a population-based study. Am J Respir Crit Care Med. 2018;197:56–65.

    Article  Google Scholar 

  5. Weinheimer O, Achenbach T, Bletz C, Duber C, Kauczor H-U, Heussel CP. About objective 3-d analysis of airway geometry in computerized tomography. IEEE Trans Med Imaging. 2008;27:64–74. IEEE

    Article  CAS  Google Scholar 

  6. Oguma T, Hirai T, Niimi A, Matsumoto H, Muro S, Shigematsu M, Nishimura T, Kubo Y, Mishima M. Limitations of airway dimension measurement on images obtained using multi-detector row computed tomography. Muñoz-Barrutia A, editor. PLoS One. 2013; 8: e76381. Public Library of Science

    Google Scholar 

  7. Dame Carroll JR, Chandra A, Jones AS, Berend N, Magnussen JS, King GG. Airway dimensions measured from micro-computed tomography and high-resolution computed tomography. Eur Respir J. 2006;28:712–20.

    Article  CAS  Google Scholar 

  8. de Jong PA, Müller NL, Paré PD, Coxson HO. Computed tomographic imaging of the airways: relationship to structure and function. Eur Respir J. 2005;26(1):140–52.

    Article  Google Scholar 

  9. Okazawa M, Müller N, McNamara AE, Child S, Verburgt L, Paré PD. Human airway narrowing measured using high resolution computed tomography. Am J Respir Crit Care Med. 1996;154:1557–62. American Public Health Association

    Article  CAS  Google Scholar 

  10. Nakano Y, Wong JC, de Jong PA, Buzatu L, Nagao T, Coxson HO, Elliott WM, Hogg JC, Paré PD. The prediction of small airway dimensions using computed tomography. Am J Respir Crit Care Med. 2005;171:142–6.

    Article  Google Scholar 

  11. Han MK, Kazerooni EA, Lynch DA, Liu LX, Murray S, Curtis JL, Criner GJ, Kim V, Bowler RP, Hanania NA, Anzueto AR, Make BJ, Hokanson JE, Crapo JD, Silverman EK, Martinez FJ, Washko GR, COPDGene Investigators. Chronic obstructive pulmonary disease exacerbations in the COPDGene study: associated radiologic phenotypes. Radiology. 2011;261:274–82.

    Article  Google Scholar 

  12. Smith BM, Hoffman EA, Rabinowitz D, Bleecker E, Christenson S, Couper D, Donohue KM, Han MK, Hansel NN, Kanner RE, Kleerup E, Rennard S, Barr RG. Comparison of spatially matched airways reveals thinner airway walls in COPD. The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study and the Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS). Thorax. 2014;69:987–96.

    Article  Google Scholar 

  13. Washko GR, Diaz AA, Kim V, Barr RG, Dransfield MT, Schroeder J, Reilly JJ, Ramsdell JW, McKenzie A, van Beek EJR, Lynch DA, Butler JP, Han MK. Computed tomographic measures of airway morphology in smokers and never-smoking normals. J Appl Physiol. 2014;116:668–73. American Physiological Society Bethesda, MD

    Article  CAS  Google Scholar 

  14. Hasegawa M, Nasuhara Y, Onodera Y, Makita H, Nagai K, Fuke S, Ito Y, Betsuyaku T, Nishimura M. Airflow limitation and airway dimensions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;173:1309–15.

    Article  Google Scholar 

  15. Shimizu K, Seto R, Makita H, Suzuki M, Konno S, Ito YM, Kanda R, Ogawa E, Nakano Y, Nishimura M. Computed tomography (CT)-assessed bronchodilation induced by inhaled indacaterol and glycopyrronium/indacaterol in COPD. Respir Med. 2016;119:70–7.

    Article  Google Scholar 

  16. Kuyper LM, Paré PD, Hogg JC, Lambert RK, Ionescu D, Woods R, Bai TR. Characterization of airway plugging in fatal asthma. Am J Med. 2003;115:6–11.

    Article  Google Scholar 

  17. Tanabe N, Oguma T, Sato S, Kubo T, Kozawa S, Shima H, Koizumi K, Sato A, Muro S, Togashi K, Hirai T. Quantitative measurement of airway dimensions using ultra-high resolution computed tomography. Respir Investig. 2018;56:489–96.

    Article  Google Scholar 

  18. Tanabe N, Shima H, Sato S, Oguma T, Kubo T, Kozawa S, Koizumi K, Sato A, Togashi K, Hirai T. Direct evaluation of peripheral airways using ultra-high-resolution CT in chronic obstructive pulmonary disease. Eur J Radiol. 2019;120:108687.

    Article  Google Scholar 

  19. Niimi A, Matsumoto H, Takemura M, Ueda T, Chin K, Mishima M. Relationship of airway wall thickness to airway sensitivity and airway reactivity in asthma. Am J Respir Crit Care Med. 2003;168:983–8.

    Article  Google Scholar 

  20. Nakano Y, Müller NL, King GG, Niimi A, Kalloger SE, Mishima M, Paré PD. Quantitative assessment of airway remodeling using high-resolution CT. Chest. 2002;122:271S–5S.

    Article  Google Scholar 

  21. Petty TL. The history of COPD. Int J Chron Obstruct Pulmon Dis. 2006;1:3–14. Dove Press

    PubMed  PubMed Central  Google Scholar 

  22. Grydeland TB, Dirksen A, Coxson HO, Eagan TML, Thorsen E, Pillai SG, Sharma S, Eide GE, Gulsvik A, Bakke PS. Quantitative computed tomography measures of emphysema and airway wall thickness are related to respiratory symptoms. Am J Respir Crit Care Med. 2010;181:353–9.

    Article  Google Scholar 

  23. Yamashiro T, Moriya H, Matsuoka S, Nagatani Y, Tsubakimoto M, Tsuchiya N, Murayama S. Asynchrony in respiratory movements between the pulmonary lobes in patients with COPD: continuous measurement of lung density by 4-dimensional dynamic-ventilation CT. Int J Chron Obstruct Pulmon Dis. 2017;12:2101–9. Dove Press

    Article  Google Scholar 

  24. Yamashiro T, Moriya H, Tsubakimoto M, Matsuoka S, Murayama S. Continuous quantitative measurement of the proximal airway dimensions and lung density on four-dimensional dynamic-ventilation CT in smokers. Int J Chron Obstruct Pulmon Dis. 2016;11:755–64. Dove Press

    Article  Google Scholar 

  25. Oguma T, Hirai T, Fukui M, Tanabe N, Marumo S, Nakamura H, Ito H, Sato S, Niimi A, Ito I, Matsumoto H, Muro S, Mishima M. Longitudinal shape irregularity of airway lumen assessed by CT in patients with bronchial asthma and COPD. Thorax. 2015;70:719–24.

    Article  Google Scholar 

  26. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Paré PD. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350:2645–53.

    Article  CAS  Google Scholar 

  27. McDonough JE, Yuan R, Suzuki M, Seyednejad N, Elliott WM, Sanchez PG, Wright AC, Gefter WB, Litzky L, Coxson HO, Paré PD, Sin DD, Pierce RA, Woods JC, McWilliams AM, Mayo JR, Lam SC, Cooper JD, Hogg JC. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365:1567–75.

    Article  CAS  Google Scholar 

  28. Koo H-K, Vasilescu DM, Booth S, Hsieh A, Katsamenis OL, Fishbane N, Elliott WM, Kirby M, Lackie P, Sinclair I, Warner JA, Cooper JD, Coxson HO, Paré PD, Hogg JC, Hackett T-L. Small airways disease in mild and moderate chronic obstructive pulmonary disease: a cross-sectional study. Lancet Respir Med. 2018;6:591–602.

    Article  Google Scholar 

  29. Tanabe N, Vasilescu DM, Kirby M, Coxson HO, Verleden SE, Vanaudenaerde BM, Kinose D, Nakano Y, Paré PD, Hogg JC. Analysis of airway pathology in COPD using a combination of computed tomography, micro-computed tomography and histology. Eur Respir J. 2018;51:1701245.

    Article  Google Scholar 

  30. Tanabe N, Sato S, Oguma T, Shima H, Sato A, Muro S, Hirai T. Associations of airway tree to lung volume ratio on computed tomography with lung function and symptoms in chronic obstructive pulmonary disease. Respir Res. 2019; 20:77. BioMed Central.

    Google Scholar 

  31. Kambara K, Shimizu K, Makita H, Hasegawa M, Nagai K, Konno S, Nishimura M. Effect of lung volume on airway luminal area assessed by computed tomography in chronic obstructive pulmonary disease. Arjomandi M, editor. PLoS One. 2014; 9:e90040. Public Library of Science.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sato, S., Hirai, T. (2020). Radiological Evaluation of Lower Airway Dimensions Deciding Ventilatory Dynamics: Can Radiologically Determined, Static Airway Structures Precisely Predict Ventilatory Dysfunction?. In: Yamaguchi, K. (eds) Structure-Function Relationships in Various Respiratory Systems. Respiratory Disease Series: Diagnostic Tools and Disease Managements. Springer, Singapore. https://doi.org/10.1007/978-981-15-5596-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5596-1_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5595-4

  • Online ISBN: 978-981-15-5596-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics