Skip to main content
Log in

Unsteady wall shear stress analysis from image-based computational fluid dynamic aneurysm models under Newtonian and Casson rheological models

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The aim of this work was to determine whether or not Newtonian rheology assumption in image-based patient-specific computational fluid dynamics (CFD) cerebrovascular models harboring cerebral aneurysms may affect the hemodynamics characteristics, which have been previously associated with aneurysm progression and rupture. Ten patients with cerebral aneurysms with lobulations were considered. CFD models were reconstructed from 3DRA and 4DCTA images by means of region growing, deformable models, and an advancing front technique. Patient-specific FEM blood flow simulations were performed under Newtonian and Casson rheological models. Wall shear stress (WSS) maps were created and distributions were compared at the end diastole. Regions of lower WSS (lobulation) and higher WSS (neck) were identified. WSS changes in time were analyzed. Maximum, minimum and time-averaged values were calculated and statistically compared. WSS characterization remained unchanged. At high WSS regions, Casson rheology systematically produced higher WSS minimum, maximum and time-averaged values. However, those differences were not statistically significant. At low WSS regions, when averaging over all cases, the Casson model produced higher stresses, although in some cases the Newtonian model did. However, those differences were not significant either. There is no evidence that Newtonian model overestimates WSS. Differences are not statistically significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46(11):1097–1112

    Article  PubMed  Google Scholar 

  2. Cárdenes R, Larrabide I, Frangi AF, Román LS (2013) Performance assessment of isolation methods for geometrical cerebral aneurysm analysis. Med Biol Eng Comput 51(3):343–352

    Article  PubMed  Google Scholar 

  3. Castro MA (2013) Understanding the role of hemodynamics on the initiation, progression, rupture, and treatment outcome of cerebral aneurysm from medical image-based computational studies. ISRN Radiol 2013:1–17

    Article  Google Scholar 

  4. Castro MA, Putman CM, Cebral JR (2006) Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intraaneurysmal hemodynamics, Am J Neuroradiol 27:1703–1709. doi:10.5402/2013/602707

  5. Castro MA, Putman CM, Cebral JR (2008) Computational hemodynamics of cerebral aneurysms: assessing the risk of rupture from hemodynamic patterns. VDM Verlag, Germany

    Google Scholar 

  6. Castro MA, Putman CM, Cebral JR (2009) Hemodynamic patterns of anterior communicating artery Aneurysms: a possible association with rupture. Am J Neuroradiol 30(2):297–302

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Castro MA, Ahumada Olivares MC, Putman C, Cebral JR (2013) Hemodynamic differences in intracranial aneurysm blebs due to blood rheology. J Phys Conf Ser 477(012001):1–10. doi:10.1088/1742-6596/477/1/012001

  8. Cebral JR, Castro MA, Soto O et al (2003) Blood flow models of the circle of Willis from magnetic resonance data. J Eng Math 47(3–4):369–386

    Article  Google Scholar 

  9. Cebral JR, Castro MA, Appanaboyina S et al (2005) Efficient pipeline for image-based patient-specific analysis of cerebral aneurysms hemodynamics: technique and sensitivity. IEEE Trans Med Imaging 24(4):457–467

    Article  PubMed  Google Scholar 

  10. Cebral JR, Pergolizzi RS, Putman CM (2007) Computational fluid dynamics modeling of intracranial aneurysms: qualitative comparison with cerebral angiography. Acad Radiol 14:804–813

    Article  PubMed  Google Scholar 

  11. Cebral JR, Castro MA, Putman CM et al (2008) Flow–area relationship in internal carotid and vertebral arteries. Phys Meas 29(10):585–594

    Article  CAS  Google Scholar 

  12. Cebral JR, Putman CM, Alley MT, Hope T, Bammer R, Calamante F (2009) Hemodynamics in normal cerebral arteries: qualitative comparison of 4D phase-contrast magnetic resonance and image-based computational fluid dynamics. J Eng Math 64(4):367–378

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cebral JR, Sheridan M, Putman CM (2010) Hemodynamics and bleb formation in intracranial aneurysms. Am J Neuroradiol 31:304–310

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Cebral JR, Mut F, Weir J, Putman CM (2011) Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. Am J Neuroradiol 32:145–151

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Cebral JR, Mut F, Weir J et al (2011) Association of hemodynamic characteristics and cerebral aneurysm rupture. Am J Neuroradiol 32:264–270

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Chang HH, Duckwiler GR, Valentine DJ, Chu WC (2009) Computer-assisted extraction of intracranial aneurysms on 3D rotational angiograms for computational fluid dynamics modeling. Med Phys 36(12):5612–5621

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chien A, Tateshima S, Castro MA, Sayre J, Cebral JR, Viñuela F (2008) Patient-specific computational flow analysis of brain aneurysms at a single location: comparison of hemodynamic characteristics in small aneurysms. Med Biol Eng Comput 46:1113–1120

    Article  PubMed  Google Scholar 

  18. Crompton M (1996) Mechanisms of growth and rupture in cerebral berry aneurysms. Br Med J 1:1138–1142

    Article  Google Scholar 

  19. Evjua O, Valen-Sendstada K, Mardal K-A (2013) A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions. J Biomech 46:2802–2808. doi:10.1016/j.jbiomech.2013.09.004 (Epub 2013 Sep 16)

  20. Fisher C, Stroud Rossmann J (2009) Effects of non-Newtonian behavior on hemodynamics of cerebral aneurysms. J Biomech Eng 131(9):1–9. doi:10.1115/1.3148470

  21. Hernández M, Frangi A (2007) Non-parametric geodesic active regions: method and evaluation for cerebral aneurysms segmentation in 3DRA and CTA. Med Image Anal 11:142–224

    Article  Google Scholar 

  22. Jou L-D, Mawad ME (2011) Timing and size of flow impingement in a giant intracranial aneurysm at the internal carotid artery. Med Biol Eng Comput 49(8):891–899

    Article  PubMed  Google Scholar 

  23. Jou LD, Lee DH, Morsi H et al (2008) Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. Am J Neuroradiol 29:1761–1767

    Article  PubMed  Google Scholar 

  24. Khanafer KM, Gadhoke P, Berguer R et al (2006) Modeling pulsatile flow in aortic aneurysms: effect on non-Newtonian properties of blood. Biorheology 43:661–679

    PubMed  Google Scholar 

  25. Kulcsar Z, Ugron A, Marosfo M et al (2008) Hemodynamics of cerebral aneurysm initiation: the role of wall shear stress and spatial wall shear stress gradient. Am J Neuroradiol 32(3):587–594. doi:10.3174/ajnr.A2339

    Article  Google Scholar 

  26. Löhner R (1996) Extensions and improvements of the advancing front grid generation technique. Commun Numer Method Eng 12:683–702. doi:10.1002/(SICI)1099-0887(199610)12:10<683:AID-CNM983>3.0.CO;2-1

    Article  Google Scholar 

  27. Löhner R (1996) Regridding surface triangulations. J Comput Phys 126:1–10

    Article  Google Scholar 

  28. Löhner R (1997) Automatic unstructured grid generators. Finite Elem Anal Des 25:111–134

    Article  Google Scholar 

  29. Low M, Perktold K, Raunig R (1993) Hemodynamics in rigid and distensible saccular aneurysms: a numerical study of pulsatile flow characteristics. Biorheology 30:287–298

    PubMed  CAS  Google Scholar 

  30. Mazumdar JN (1992) Biofluid mechanics. World Scientific, Singapore

    Book  Google Scholar 

  31. Nakatani H, Hashimoto N, Kang H et al (1991) Cerebral blood flow patterns at major vessel bifurcations and aneurysms in rats. J Neurosurg 74:258–262

    Article  PubMed  CAS  Google Scholar 

  32. Rayz VL, Boussel L, Lawton MT et al (2011) Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation. Ann Biomed Eng 36(11):1793–1804

    Article  Google Scholar 

  33. Sherman TF (1981) On connecting large vessels to small. The meaning of Murray’s law. J Gen Physiol 78:431–453

    Article  PubMed  CAS  Google Scholar 

  34. Shojima M, Oshima M, Takaqi K et al (2004) Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral aneurysms. Stroke 35:2500–2505

    Article  PubMed  Google Scholar 

  35. Shojima M, Nemoto S, Morita A et al (2010) Role of shear stress in the blister formation of cerebral aneurysms. Neurosurgery 67(5):1268–1275

    Article  PubMed  Google Scholar 

  36. Steinman DA, Milner JS, Norley CJ et al (2003) Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am J Neuroradiol 24(4):559–566

    PubMed  Google Scholar 

  37. Steinman DA, Milner JS, Norley CJ et al (2003) Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am J Neuroradiol 24:559–566

    PubMed  Google Scholar 

  38. Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Meth Appl Mech Eng 158:155–196

    Article  Google Scholar 

  39. Valencia AA, Guzmán AM, Finol EA et al (2006) Blood flow dynamics in saccular aneurysm models of the basilar artery. J Biomech Eng 128(4):516–526

    Article  PubMed  Google Scholar 

  40. Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127:553–563

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Xiang J, Tremmel M, Kolega J et al (2011) Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimated rupture risk. J Neurointerv Surg 4(5):351–357

    Article  PubMed  Google Scholar 

  42. Yim P, Vasbinder GB, Ho VB et al (2003) Isosurfaces as deformable models for magnetic resonance angiography. IEEE Trans Med Imaging 22(7):875–881

  43. Yim P, Demarco KJ, Castro MA, Cebral JR (2005) Characterization of shear stress on the wall of the carotid artery using magnetic resonance imaging and computational fluid dynamics. Stud Health Technol Inform 113:412–442

Download references

Acknowledgments

Marcelo Castro wants to acknowledge CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina) for financial support. This work was partially supported by research Grant PICT #2012-279 ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo A. Castro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, M.A., Olivares, M.C.A., Putman, C.M. et al. Unsteady wall shear stress analysis from image-based computational fluid dynamic aneurysm models under Newtonian and Casson rheological models. Med Biol Eng Comput 52, 827–839 (2014). https://doi.org/10.1007/s11517-014-1189-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1189-z

Keywords

Navigation