Skip to main content
Log in

Noise and selectivity of velocity-selective multi-electrode nerve cuffs

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Using a multi-electrode nerve-signal recording cuff and a method of signal processing described previously, activity in axons with different propagation velocities can be distinguished, and the relative amplitude of the small-fibre signals increased. This paper is, largely, an analysis of the selectivity and noise of this system though impedance measurements from an actual cuff are included. The signal processor includes narrow band-pass filters. It is shown that the selectivity and noise both increase with the centre frequencies of these filters. A convenient approach is to make the filter frequencies inversely related to the artificial time delays so that the filter ‘Q’s are approximately constant and the noise densities are equal for all velocity filters. Numerical calculations, using formulae for this system and for the conventional tripole, based on a fixed cuff size and tissue resistivity, find the number of action potentials per second that must pass through the cuff so that the signal power equals the noise power. For slow fibres (20 m/s), the rate is 14 times lower for the multi-electrode cuff than the tripole, a significant advantage for recording from these fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A, B, C :

constants of TMAP function (Eq. 2)

DSP:

digital signal processor

v :

velocity of action potentials (AP)

V AO :

voltage spectrum at the adder output (AO)

V m :

voltage spectrum of the trans-membrane action potential (TMAP)

H 0 :

transfer function of the tripole

G :

transfer function of the delay-&-add

d :

electrode pitch

R s :

spreading resistance of one electrode

R e :

axial resistance through the cuff between the end electrodes

L e :

axial distance through the cuff between the end electrodes

N :

number of tripoles in the multi-electrode cuff (MEC)

τ :

artificial time delay (Fig. 1)

v0, v+, v:

centre, higher −3 dB, and lower −3 dB velocities of the velocity-selective filter

Q v :

Q-factor for filter where \( Q_{v} = \frac{{v_{0} }}{{v_{ + } - v_{ - } }} \)

α, β, γ :

fractions of noise added after delays (Eq. 14)

P :

power spectral density (PSD)

E :

energy spectral density (ESD)

TAO:

tripolar amplifier output

k :

Boltzmann’s constant (1.38 × 10−23 J/K)

T :

absolute temperature

G 1, G 2 :

gains of first- and second-rank amplifiers A1 and A2 (Fig. 5)

n :

index for elements in Fig. 5

Ψ :

function of cuff defined by Eq. 21 and used in Eq. 22

SNR:

signal-to noise ratio after the bandpass filters (BPF)

SPU:

signal processing unit (see Fig. 1)

BPF:

bandpass filter (always narrow in this paper)

f :

frequency equivalent to ω/(2π)

r :

average action potential rate (AP/s), from all fibres in appropriate range of velocity

f1, f2:

band edges of wide-band tripole amplifier (500 and 5,000 Hz here)

References

  1. Andreasen LN, Struijk JJ (2006) Model-based evaluation of the short-circuited tripolar cuff configuration. Med Biol Eng Comput 44(5):404–413. doi:10.1007/s11517-006-0057-x

    Article  Google Scholar 

  2. Bronstein IN, Semendjajew KA (1989) Taschenbuch der Mathematik, 24th edn. Teuber Verlagsgesellschaft Leipzig

  3. Donaldson PEK, Donaldson NN, Rushton DN, Perkins TA (1998) Estimated electrode operating conditions of the first London Mk V implanted stimulator. J Med Eng Technol 22:216–219

    Article  Google Scholar 

  4. Donaldson NN, Zhou L, Perkins TA, Munih M, Haugland M, Sinkjaer T (2003) Implantable telemeter for long term electroneurographic recordings in animals and man. Med Biol Eng Comput 41:654–664. doi:10.1007/BF02349973

    Article  Google Scholar 

  5. Grill WM, Mortimer JT (1994) Electrical properties of implant encapsulation tissue. Ann Biomed Eng 22:23–33. doi:10.1007/BF02368219

    Article  Google Scholar 

  6. Hoffer JA, Marks WB, Rymer WZ (1974) Nerve fiber activity during normal movements. Proceedings of the annual meeting for society of neuroscience, St Louis, 4, pp 300

  7. Inmann A, Haugland M (2004) Implementation of natural sensory feedback in a portable control system for a hand grasp neuroprosthesis. Med Eng Phys 26(6):449–458. doi:10.1016/j.medengphy.2004.03.003

    Article  Google Scholar 

  8. Jia X, Koenig MA, Zhang X, Zhang J, Chen T, Chen Z (2007) Residual motor signal in long-term human severed peripheral nerves and feasibility of neural signal-controlled artificial limb. J Hand Surg Am 32(5):657–666. doi:10.1016/j.jhsa.2007.02.021

    Article  Google Scholar 

  9. Liu X, Demosthenous A, Donaldson N. Platinum electrode noise in the ENG spectrum. Parallel submission to Med Biol Eng Comput. doi:10.1007/s11517-008-386-z

  10. Matthews PBC (1972) Mammalian muscle receptors and their central actions. Edward Arnold, London

    Google Scholar 

  11. Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10(3):229–258. doi:10.1111/j.1085-9489.2005.10303.x

    Article  Google Scholar 

  12. Rieger R, Taylor J, Demosthenous A, Donaldson N, Langlois PJ (2003) Design of a low-noise preamplifier for nerve cuff electrode recording. IEEE J Solid-State Circuits 38:1373–1379. doi:10.1109/JSSC.2003.814437

    Article  Google Scholar 

  13. Schuettler M, Stieglitz T, Gross M, Altpeter D, Staiger A, Doerge T, et al. (2001) Reducing stiffness and electrical losses of high channel hybrid nerve cuff electrodes CD-ROM Proc. 23th Annual international conference of the IEEE. EMBS, Istanbul, 25–28 October 2001

  14. Schuettler M, Seetohul V, Taylor J, Donaldson N (2006) Velocity-selective recording from frog nerve using a multi-contact cuff electrode. Conf Proc IEEE Eng Med Biol Soc 1:2962–2965

    Google Scholar 

  15. Stein RB, Charles D, Davis L, Jhamandas J, Mannard A, Nichols TR (1975) Principles underlying new methods for chronic neural recording. Can J Neurol Sci 2(3):235–244

    Google Scholar 

  16. Struijk JJ (1997) The extracellular potential of a myelinated nerve fibre in an unbounded medium and in nerve cuff models. Biophys J 72:2457–2469

    Article  Google Scholar 

  17. Taylor J, Donaldson N, Winter J (2004) The use of multiple-electrode nerve cuffs for low velocity and velocity-selective neural recording. Med Biol Eng Comput 42(5):634–643. doi:10.1007/BF02347545

    Article  Google Scholar 

  18. Rieger R, Schuettler M, Pal D, Clarke C, Langlois P, Taylor J et al (2006) Very low-noise ENG amplifier system using CMOS technology. IEEE Trans Neural Syst Rehabil Eng 14(4):427–437. doi:10.1109/TNSRE.2006.886731

    Article  Google Scholar 

  19. Triantis IF, Demosthenous A, Donaldson N (2005) On cuff imbalance and tripolar ENG amplifier configurations. IEEE Trans Biomed Eng 52(2):314–320. doi:10.1109/TBME.2004.840470

    Article  Google Scholar 

  20. Upshaw BM (1999) PhD Thesis, University of Aalborg, Denmark

Download references

Acknowledgments

We thank the UK EPSRC (Grant GR/S93790/01) and the CEU (IMANE STREP 026602) for supporting this work; and also the German Academic Exchange Service (DAAD) for M. Schuettler’s fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Donaldson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donaldson, N., Rieger, R., Schuettler, M. et al. Noise and selectivity of velocity-selective multi-electrode nerve cuffs. Med Biol Eng Comput 46, 1005–1018 (2008). https://doi.org/10.1007/s11517-008-0365-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0365-4

Keywords

Navigation