Skip to main content
Log in

Identification of task parameters from movement-related cortical potentials

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The study investigates the accuracy in discriminating rate of torque development (RTD) and target torque (TT) (task parameters) from electroencephalography (EEG) signals generated during imaginary motor tasks. Signals were acquired from nine healthy subjects during four imaginary isometric plantar-flexions of the right foot involving two RTDs (ballistic and moderate) and two TTs (30 and 60% of the maximal voluntary contraction torque), each repeated 60 times in random order. The single-trial EEG traces were classified with a pattern recognition approach based on wavelet coefficients as features and support vector machine (SVM) as classifier. Average misclassification rates were (mean ± SD) 16 ± 9% and 26 ± 13% for discrimination of the two TTs under ballistic and moderate RTDs, respectively. RTDs could be discriminated with misclassification rates of 16 ± 11% and 19 ± 10% under high and low TT, respectively. These results indicate that differences in both TT and RTD can be detected from single-trial EEG traces during imaginary tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Birbaumer N, Kubler A, Ghanayim N, Hinterberger T, Perelmouter J, Kaiser J, Iversen I, Kotchoubey B, Neumann N, Flor H (2000) The thought translation device (TTD) for completely paralyzed patients. IEEE Trans Rehabil Eng 8:190–193

    Article  Google Scholar 

  2. Bishop C (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    Google Scholar 

  3. Blankertz B, Dornhege G, Schäfer C, Krepki R, Kohlmorgen J, Müller KR, Kunzmann V, Losch F, Curio G (2003) Boosting bit rates and error detection for the classification of fast-paced motor commands based on single trial EEG analysis. IEEE Trans Rehabil Eng 11:127–131

    Article  Google Scholar 

  4. Böcker KBE, Brunia CHM, Cluitmans PJM (1994) A spatio-temporal dipole model of the readiness potential in humans. II. Foot movement. Electroencephalogr Clin Neurophysiol 91:286–294

    Article  Google Scholar 

  5. Brunia CHM, Vingerhoets AJ (1980) CNV and EMG preceding a plantar flexion of the foot. Biol Psychol 11:181–191

    Article  Google Scholar 

  6. Burrus CS, Gopinath RA, Guo H (1997) Introduction to wavelets and wavelet transforms. Prentice Hall, Englewood Cliffs, pp 53–66

  7. Curran EA, Stokes MJ (2003) Learning to control brain activity: a review of the production and control of EEG components for driving brain–computer interface (BCI) systems. Brain Cogn 51:326–336

    Article  Google Scholar 

  8. Decety J (1996) The neurophysiological basis of motor imagery. Behav Brain Res 77:45–52

    Article  Google Scholar 

  9. do Nascimento OF, Farina D (2008) Movement-related cortical potentials allow discrimination of rate of torque development in imaginary isometric plantar flexion. IEEE Trans Biomed Eng 55:2675–2678

    Article  Google Scholar 

  10. do Nascimento OF, Nielsen KD, Voigt M (2005) Relationship between plantar-flexor torque generation and the magnitude of the movement-related potentials. Exp Brain Res 160:154–165

    Article  Google Scholar 

  11. do Nascimento OF, Nielsen KD, Voigt M (2006) Movement-related parameters modulate cortical activity during imaginary isometric plantar-flexions. Exp Brain Res 171:78–90

    Article  Google Scholar 

  12. Dornhege G, Millan, J del R, Hinterberger T, Mcfarland DJ, Muller KR (2007) Toward brain computer interfacing. The MIT Press, Cambridge, pp 228–230

    Google Scholar 

  13. Farina D, do Nascimento OF, Lucas MF, Doncarli C (2006) Parameterization of wavelets for optimized signal representation in the classification of movement-related cortical potentials. In: Proceedings of 3rd International BCI Workshop, Graz, pp 10–11

  14. Farina D, do Nascimento OF, Lucas MF, Doncarli C (2007) Optimization of wavelets for classification of movement-related cortical potentials generated by variation of force-related parameters. J Neurosci Methods 162:357–363

    Article  Google Scholar 

  15. Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523

    Article  Google Scholar 

  16. Klem GH, Lüders HO, Jasper HH, Elger C (1999) The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:3–6

    Google Scholar 

  17. Krauledat M, Dornhege G, Blankertz B, Losch F, Curio G, Muller KR (2004) Improving speed and accuracy of brain computer interface using readiness potential features. In: Proceedings of 26th Annual International Conference IEEE EMBS, pp 4511–4515

  18. Kübler A, Nijboer F, Mellinger J, Vaughan TM, Pawelzik H, Schalk G et al (2005) Patients with ALS can use sensorimotor rhythms to operate a brain–computer interface. Neurology 64:1775–1777

    Article  Google Scholar 

  19. Kübler A, Nijboer F, Birbaumer N (2007): Brain–computer interfaces for communication and motor control-perspectives on clinical applications. In: Dornhege G, Millán JR et al. (Hrsg.) Toward brain–computer interfacing. MIT Press, Cambridge, pp 373-391

  20. Maitrot A, Lucas MF, Doncarli C, Farina D (2005) Signal-dependent wavelets for electromyogram classification. Med Biol Eng Comput 43:487–492

    Article  Google Scholar 

  21. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693

    Article  MATH  Google Scholar 

  22. McFarland DJ, Wolpaw JR (2005) Sensorimotor rhythm-based brain–computer interface (BCI): feature selection by regression improves performance. IEEE Trans Rehabil Eng 13:372–379

    Article  Google Scholar 

  23. McFarland DJ, Miner LA, Vaughan TM, Wolpaw JR (2000) Mu and Beta rhythm topographies during motor imagery and actual movements. Brain Topogr 12:177–186

    Article  Google Scholar 

  24. Middendorf M, McMillan G, Calhoun G, Jones KS (2000) Brain–computer interface based on the steady-state visual-evoked response. IEEE Trans Rehabil Eng 8:211–214

    Article  Google Scholar 

  25. Neuper C, Schlögl A, Pfurtscheller G (1999) Enhancement of left-right sensorimotor EEG differences during feedback-regulated motor imagery. Clin Neurophysiol 16:373–382

    Article  Google Scholar 

  26. Neuper C, Müller GR, Kübler A, Birbaumer N, Pfurtscheller G (2003) Clinical application of an EEG-based brain–computer interface: a case study in a patient with severe motor impairment. Clin Neurophysiol 114(3):399–409

    Article  Google Scholar 

  27. Neuper C, Scherer R, Reiner M, Pfurtscheller G (2005) Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Cogn Brain Res 25:668–677

    Article  Google Scholar 

  28. Nielsen KD, Cabrera AF, do Nascimento OF (2006) EEG based BCI-towards a better control. Brain–computer interface research at Aalborg University. IEEE Trans Rehabil Eng 14:202–204

    Article  Google Scholar 

  29. Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M (1997) EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol 103:642–651

    Article  Google Scholar 

  30. Pfurtscheller G, Guger C, Müller G, Krausz G, Neuper C (2000) Brain oscillations control hand orthosis in a tetraplegic. Neurosci Lett 292(3):211–214

    Article  Google Scholar 

  31. Pfurtscheller G, Brunner C, Schlögl A, Lopes da Silva FH (2006) Mu rhythm desynchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31:153–159

    Article  Google Scholar 

  32. Qin L, He B (2005) A wavelet-based time-frequency analysis approach for classification of motor imagery for brain–computer interface applications. J Neural Eng 2:65–72

    Article  Google Scholar 

  33. Romero DH, Lacourse MG, Lawrence KE, Schandler S, Cohen MJ (2000) Event-related potentials as a function of movement parameter variations during motor imagery and isometric action. Behav Brain Res 117:83–96

    Article  Google Scholar 

  34. Schlögl A, Lee F, Bischof H, Pfurtscheller G (2005) Characterization of four class motor imagery EEG data for the BCI-competition 2005. J Neural Eng 2:L14–L22

    Article  Google Scholar 

  35. Shibasaki H, Hallett M (2006) What is the Bereitschaftspotential? Clin Neurophysiol 117:2341–2356

    Article  Google Scholar 

  36. Slobounov SM, Ray WJ, Simon RF (1998) Movement-related potentials accompanying unilateral finger movement with special reference to rate of force development. Psychophysiology 35:537–548

    Article  Google Scholar 

  37. Stancak A Jr, Pfurtscheller G (1996) Mu- rhythm changes in brisk and slow self-paced finger movements. Neuroreport 7:1161–1164

    Article  Google Scholar 

  38. Wang T, Deng J, He B (2004) An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in a brain–computer interface. J Neural Eng 1:1–7

    Article  Google Scholar 

  39. Wang YJ, Wang RP, Gao XR, Hong B, Gao SK (2006) A practical VEP-based brain–computer interface. IEEE Trans Rehabil Eng 14:234–240

    Article  Google Scholar 

  40. Wolpaw JR, McFarland DJ, Neat GW, Forneris CA (1991) An EEG-based brain–computer interface for cursor control. Electroencephalogr Clin Neurophysiol 78:252–259

    Article  Google Scholar 

  41. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    Article  Google Scholar 

  42. Yamawaki N, Wilke C, Liu ZM, He B (2006) An enhanced time-frequency-spatial approach for motor imagery classification. IEEE Trans Rehabil Eng 14:250–254

    Article  Google Scholar 

Download references

Acknowledgments

Grants: The Danish Research Agency (Project “New generation of brain–computer interface (BCI) for reestablishment of complex motor tasks”, Contract nr. 2117-05-0083) and The Obel Family Foundation supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Farina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Y., do Nascimento, O.F., Lucas, MF. et al. Identification of task parameters from movement-related cortical potentials. Med Biol Eng Comput 47, 1257–1264 (2009). https://doi.org/10.1007/s11517-009-0523-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0523-3

Keywords

Navigation