Skip to main content

Brain–Computer Interfaces

  • Chapter
  • First Online:
Neural Engineering

Abstract

Brain–computer interfaces (BCIs) have emerged as a novel technology that bridges the brain with external devices. BCIs have been developed to decode human’s intention, leading to direct brain control of a computer or device without going through the neuromuscular pathway. Bidirectional brain–computer interfaces not only allow brain control but also open the door for modulating the central nervous system through neural interfacing. We review the concepts, principles, and various building blocks of BCIs, from signal acquisition, signal processing, feature extraction, feature translation, to device control, and various applications. The performance assessment and challenges of BCIs are also discussed. Examples of noninvasive BCIs are discussed to aid readers for an in-depth understanding of the noninvasive BCI technology, although this chapter is aimed at providing a general introduction to brain–computer interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Graimann, B. Allison, G. Pfurtscheller, brain–computer interfaces: A gentle introduction, in Braincomputer Interfaces, (Springer, Berlin, Heidelberg, 2009), pp. 1–27

    Google Scholar 

  2. E.E. Fetz, Operant conditioning of cortical unit activity. Science 163(3870), 955–958 (1969)

    CAS  Google Scholar 

  3. J.J. Vidal, Toward direct brain-computer communication. Annu. Rev. Biophys. Bioeng. 2(1), 157–180 (1973)

    CAS  Google Scholar 

  4. J.J. Vidal, Real-time detection of brain events in EEG. Proc. IEEE 65(5), 633–641 (1977)

    Google Scholar 

  5. T. Elbert, B. Rockstroh, W. Lutzenberger, N. Birbaumer, Biofeedback of slow cortical potentials. I. Electroencephalogr. Clin. Neurophysiol. 48(3), 293–301 (1980)

    CAS  Google Scholar 

  6. L.A. Farwell, E. Donchin, Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988)

    CAS  Google Scholar 

  7. J.R. Wolpaw, D.J. McFarland, G.W. Neat, C.A. Forneris, An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78(3), 252–259 (1991). https://doi.org/10.1016/0013-4694(91)90040-B

    Article  CAS  Google Scholar 

  8. B. He, S. Gao, H. Yuan, J.R. Wolpaw, Brain–Computer Interfaces, in Neural Engineering, 2nd edn. (Springer, Boston, MA, 2013), pp. 87–151

    Google Scholar 

  9. A. Vallabhaneni, T. Wang, B. He, Brain—Computer Interface, in Neural Engineering (Springer, Boston, MA, 2005), pp. 85–121

    Google Scholar 

  10. J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, T.M. Vaughan, Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)

    Google Scholar 

  11. G.K. Anumanchipalli, J. Chartier, E.F. Chang, Speech synthesis from neural decoding of spoken sentences. Nature 568(7753), 493 (2019)

    CAS  Google Scholar 

  12. T. Carlson, J. Del R. Millan, Brain-controlled wheelchairs: A robotic architecture. IEEE Robot. Autom. Mag. 20(1), 65–73 (2013)

    Google Scholar 

  13. B. Edelman, J. Meng, D. Suma, C. Zurn, E. Nagarajan, B. Baxter, et al., Noninvasive neuroimaging enhances continuous neural tracking for robotic device control. Sci. Robot. 4(31), eaaw6844 (2019)

    Google Scholar 

  14. J. Meng, S. Zhang, A. Bekyo, J. Olsoe, B. Baxter, B. He, Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks. Sci. Rep. 6, 38565 (2016)

    CAS  Google Scholar 

  15. A.B. Ajiboye, F.R. Willett, D.R. Young, W.D. Memberg, B.A. Murphy, J.P. Miller, et al., Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: A proof-of-concept demonstration. Lancet 389(10081), 1821–1830 (2017)

    Google Scholar 

  16. C.E. Bouton, A. Shaikhouni, N.V. Annetta, M.A. Bockbrader, D.A. Friedenberg, D.M. Nielson, et al., Restoring cortical control of functional movement in a human with quadriplegia. Nature 533(7602), 247 (2016)

    CAS  Google Scholar 

  17. M.T. DeBettencourt, J.D. Cohen, R.F. Lee, K.A. Norman, N.B. Turk-Browne, Closed-loop training of attention with real-time brain imaging. Nat. Neurosci. 18(3), 470–478 (2015). https://doi.org/10.1038/nn.3940

    Article  CAS  Google Scholar 

  18. J.R. Wolpaw, D.J. McFarland, Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci. 101(51), 17849–17854 (2004)

    CAS  Google Scholar 

  19. C.I. Penaloza, S. Nishio, BMI control of a third arm for multitasking. Sci. Robot. 3(20), eaat1228 (2018)

    Google Scholar 

  20. A. Biasiucci, R. Leeb, I. Iturrate, S. Perdikis, A. Al-Khodairy, T. Corbet, et al., Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat. Commun. 9(1), 2421 (2018)

    CAS  Google Scholar 

  21. B. Graimann, B. Z. Allison, G. Pfurtscheller (eds.), Brain-Computer Interfaces: Revolutionizing Humancomputer Interaction (Springer Science & Business Media, Springer, Berlin, Heidelberg, 2010)

    Google Scholar 

  22. A.J. Ijspeert, Central pattern generators for locomotion control in animals and robots: A review. Neural Netw. 21(4), 642–653 (2008)

    Google Scholar 

  23. T. Saneyoshi, D.A. Fortin, T.R. Soderling, Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways. Curr. Opin. Neurobiol. 20(1), 108–115 (2010)

    CAS  Google Scholar 

  24. J.R. Wolpaw, What can the spinal cord teach us about learning and memory? Neuroscientist 16(5), 532–549 (2010)

    Google Scholar 

  25. P. Shenoy, M. Krauledat, B. Blankertz, R.P. Rao, K.-R. Müller, Towards adaptive classification for BCI. J. Neural Eng. 3(1), R13 (2006)

    Google Scholar 

  26. A.L. Orsborn, H.G. Moorman, S.A. Overduin, M.M. Shanechi, D.F. Dimitrov, J.M. Carmena, Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control. Neuron 82(6), 1380–1393 (2014)

    CAS  Google Scholar 

  27. S. Perdikis, L. Tonin, S. Saeedi, C. Schneider, J. Del R. Millán, The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users. PLoS Biol. 16(5), e2003787 (2018)

    Google Scholar 

  28. J.S. Müller, C. Vidaurre, M. Schreuder, F.C. Meinecke, P. Von Bünau, K.-R. Müller, A mathematical model for the two-learners problem. J. Neural Eng. 14(3), 036005 (2017)

    Google Scholar 

  29. A.J. Doud, J.P. Lucas, M.T. Pisansky, B. He, Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface. PLoS One 6(10), e26322 (2011)

    CAS  Google Scholar 

  30. K. LaFleur, K. Cassady, A. Doud, K. Shades, E. Rogin, B. He, Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. J. Neural Eng. 10(4), 046003 (2013)

    Google Scholar 

  31. A.S. Royer, A.J. Doud, M.L. Rose, B. He, EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies. IEEE Trans. Neural Syst. Rehabil. Eng. 18(6), 581–589 (2010)

    Google Scholar 

  32. B. He, B. Baxter, B.J. Edelman, C.C. Cline, W.Y. Wenjing, Noninvasive brain-computer interfaces based on sensorimotor rhythms. Proc. IEEE 103(6), 907–925 (2015)

    Google Scholar 

  33. X. Chen, B. Zhao, Y. Wang, X. Gao, Combination of highfrequency SSVEP-based BCI and computer vision for controlling a robotic arm. J. Neural Eng. 16(2), 026012 (2019)

    Google Scholar 

  34. C.G. Coogan, B. He, Brain-computer interface control in a virtual reality environment and applications for the internet of things. IEEE Access 6, 10840–10849 (2018)

    Google Scholar 

  35. B.J. Edelman, N. Johnson, A. Sohrabpour, S. Tong, N. Thakor, B. He, Systems neuroengineering: Understanding and interacting with the brain. Engineering 1(3), 292–308 (2015)

    Google Scholar 

  36. H. Akbari, B. Khalighinejad, J.L. Herrero, A.D. Mehta, N. Mesgarani, Towards reconstructing intelligible speech from the human auditory cortex. Sci. Rep. 9(1), 874 (2019)

    Google Scholar 

  37. B.N. Pasley, S.V. David, N. Mesgarani, A. Flinker, S.A. Shamma, N.E. Crone, et al., Reconstructing speech from human auditory cortex. PLoS Biol. 10(1) (2012). https://doi.org/10.1371/journal.pbio.1001251

  38. E. Donchin, K.M. Spencer, R. Wijesinghe, The mental prosthesis: Assessing the speed of a P300-based brain-computer interface. IEEE Trans. Rehabil. Eng. 8(2), 174–179 (2000)

    CAS  Google Scholar 

  39. G. Townsend, B.K. LaPallo, C.B. Boulay, D.J. Krusienski, G. Frye, C. Hauser, et al., A novel P300-based brain–computer interface stimulus presentation paradigm: Moving beyond rows and columns. Clin. Neurophysiol. 121(7), 1109–1120 (2010)

    CAS  Google Scholar 

  40. Y. Wang, X. Gao, B. Hong, C. Jia, S. Gao, Brain-computer interfaces based on visual evoked potentials. IEEE Eng. Med. Biol. Mag. 27(5), 64–71 (2008)

    CAS  Google Scholar 

  41. M. Angrick, C. Herff, E. Mugler, M.C. Tate, M.W. Slutzky, D.J. Krusienski, T. Schultz, Speech synthesis from ECoG using densely connected 3D convolutional neural networks. J. Neural Eng. 16(3), 036019 (2019)

    Google Scholar 

  42. R. Teasell, N. Hussein, Clinical consequences of stroke, in Evidence-Based Review of Stroke Rehabilitation, (March 2018), pp. 1–29. http://ebrsr.com/evidence-review/2-clinical-consequences-stroke

  43. H. Yuan, T. Liu, R. Szarkowski, C. Rios, J. Ashe, B. He, Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: An EEG and fMRI study of motor imagery and movements. NeuroImage 49(3), 2596–2606 (2010)

    Google Scholar 

  44. D.M. Taylor, S.I.H. Tillery, A.B. Schwartz, Direct cortical control of 3D neuroprosthetic devices. Science 296(5574), 1829–1832 (2002). https://doi.org/10.1126/science.1070291

    Article  CAS  Google Scholar 

  45. M. Velliste, S. Perel, M.C. Spalding, A.S. Whitford, A.B. Schwartz, Cortical control of a prosthetic arm for self-feeding. Nature 453(7198), 1098 (2008)

    CAS  Google Scholar 

  46. L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, et al., Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099), 164–171 (2006). https://doi.org/10.1038/nature04970

    Article  CAS  Google Scholar 

  47. W. Truccolo, G.M. Friehs, J.P. Donoghue, L.R. Hochberg, Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia. J. Neurosci. 28(5), 1163–1178 (2008)

    CAS  Google Scholar 

  48. B. He, A. Sohrabpour, E. Brown, Z. Liu, Electrophysiological source imaging: A noninvasive window to brain dynamics. Annu. Rev. Biomed. Eng. 20, 171–196 (2018)

    CAS  Google Scholar 

  49. J.R. Manning, J. Jacobs, I. Fried, M.J. Kahana, Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J. Neurosci. 29(43), 13613–13620 (2009)

    CAS  Google Scholar 

  50. G. Pfurtscheller, B. Graimann, J.E. Huggins, S.P. Levine, L.A. Schuh, Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin. Neurophysiol. 114(7), 1226–1236 (2003)

    CAS  Google Scholar 

  51. G. Schalk, K.J. Miller, N.R. Anderson, J.A. Wilson, M.D. Smyth, J.G. Ojemann, et al., Two-dimensional movement control using electrocorticographic signals in humans. J. Neural Eng. 5(1), 75 (2008)

    CAS  Google Scholar 

  52. E.C. Leuthardt, C. Gaona, M. Sharma, N. Szrama, J. Roland, Z. Freudenberg, et al., Using the electrocorticographic speech network to control a brain–computer interface in humans. J. Neural Eng. 8(3), 036004 (2011)

    Google Scholar 

  53. C. Michel, B. He, EEG mapping and source imaging, in Niedermeyer's Electroencephalography, ed. by D. Schomer, F. L. da Silva, 7th edn., (Wolters Kluwer & Lippincott Williams & Wilkins, Philadelphia, 2017)

    Google Scholar 

  54. T.J. Bradberry, R.J. Gentili, J.L. Contreras-Vidal, Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals. J. Neurosci. 30(9), 3432–3437 (2010)

    CAS  Google Scholar 

  55. S. Waldert, H. Preissl, E. Demandt, C. Braun, N. Birbaumer, A. Aertsen, C. Mehring, Hand movement direction decoded from MEG and EEG. J. Neurosci. 28(4), 1000–1008 (2008)

    CAS  Google Scholar 

  56. H. Yuan, C. Perdoni, B. He, Relationship between speed and EEG activity during imagined and executed hand movements. J. Neural Eng. 7(2), 026001 (2010)

    Google Scholar 

  57. T.J. Bradberry, R.J. Gentili, J.L. Contreras-Vidal, Fast attainment of computer cursor control with noninvasively acquired brain signals. J. Neural Eng. 8(3), 036010 (2011)

    Google Scholar 

  58. A.P. Georgopoulos, A.B. Schwartz, R.E. Kettner, Neuronal population coding of movement direction. Science 233(4771), 1416–1419 (1986). https://doi.org/10.1126/science.3749885

    Article  CAS  Google Scholar 

  59. L. Qin, L. Ding, B. He, Motor imagery classification by means of source analysis for brain–computer interface applications. J. Neural Eng. 1(3), 135 (2004)

    Google Scholar 

  60. B.J. Edelman, B. Baxter, B. He, EEG source imaging enhances the decoding of complex right-hand motor imagery tasks. IEEE Trans. Biomed. Eng. 63(1), 4–14 (2016). https://doi.org/10.1109/TBME.2015.2467312

    Article  Google Scholar 

  61. B. Kamousi, A.N. Amini, B. He, Classification of motor imagery by means of cortical current density estimation and Von Neumann entropy. J. Neural Eng. 4(2), 17 (2007)

    Google Scholar 

  62. B. Kamousi, Z. Liu, B. He, Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 13(2), 166–171 (2005)

    Google Scholar 

  63. H. Yuan, A. Doud, A. Gururajan, B. He, Cortical imaging of event-related (de) synchronization during online control of brain-computer interface using minimum-norm estimates in frequency domain. IEEE Trans. Neural Syst. Rehabil. Eng. 16(5), 425–431 (2008)

    Google Scholar 

  64. E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S.S. Meyer, et al., Moving magnetoencephalography towards real-world applications with a wearable system. Nature 555(7698), 657 (2018)

    CAS  Google Scholar 

  65. J. Mellinger, G. Schalk, C. Braun, H. Preissl, W. Rosenstiel, N. Birbaumer, A. Kübler, An MEG-based brain-computer interface (BCI). NeuroImage 36(3), 581–593 (2007). https://doi.org/10.1016/j.neuroimage.2007.03.019

    Article  Google Scholar 

  66. J. Van Der Werf, O. Jensen, P. Fries, W.P. Medendorp, Neuronal synchronization in human posterior parietal cortex during reach planning. J. Neurosci. 30(4), 1402–1412 (2010)

    Google Scholar 

  67. F. Darvas, R. Scherer, J.G. Ojemann, R. Rao, K.J. Miller, L.B. Sorensen, High gamma mapping using EEG. NeuroImage 49(1), 930–938 (2010)

    CAS  Google Scholar 

  68. H. Battapady, P. Lin, T. Holroyd, M. Hallett, X. Chen, D.-Y. Fei, O. Bai, Spatial detection of multiple movement intentions from SAM-filtered single-trial MEG signals. Clin. Neurophysiol. 120(11), 1978–1987 (2009)

    Google Scholar 

  69. P.A. Bandettini, E.C. Wong, R.S. Hinks, R.S. Tikofsky, J.S. Hyde, Time course EPI of human brain function during task activation. Magn. Reson. Med. 25(2), 390–397 (1992)

    CAS  Google Scholar 

  70. K.K. Kwong, J.W. Belliveau, D.A. Chesler, I.E. Goldberg, R.M. Weisskoff, B.P. Poncelet, et al., Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. 89(12), 5675–5679 (1992)

    CAS  Google Scholar 

  71. S. Ogawa, D.W. Tank, R. Menon, J.M. Ellermann, S.G. Kim, H. Merkle, K. Ugurbil, Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. U. S. A. 89(13), 5951–5955 (1992). https://doi.org/10.1073/pnas.89.13.5951

    Article  CAS  Google Scholar 

  72. S. Ogawa, T.-M. Lee, A.R. Kay, D.W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. 87(24), 9868–9872 (1990)

    CAS  Google Scholar 

  73. H. Yuan, C. Perdoni, L. Yang, B. He, Differential electrophysiological coupling for positive and negative BOLD responses during unilateral hand movements. J. Neurosci. 31(26), 9585–9593 (2011)

    CAS  Google Scholar 

  74. R.W. Cox, A. Jesmanowicz, J.S. Hyde, Real-time functional magnetic resonance imaging. Magn. Reson. Med. 33(2), 230–236 (1995)

    CAS  Google Scholar 

  75. G. Pfurtscheller, F.L. Da Silva, Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)

    CAS  Google Scholar 

  76. G. Pfurtscheller, C. Neuper, Motor imagery and direct brain-computer communication. Proc. IEEE 89(7), 1123–1134 (2001). https://doi.org/10.1109/5.939829

    Article  Google Scholar 

  77. K.J. Miller, G. Schalk, E.E. Fetz, M. den Nijs, J.G. Ojemann, R.P. Rao, Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proc. Natl. Acad. Sci. 107(9), 4430–4435 (2010)

    CAS  Google Scholar 

  78. T. Wang, J. Deng, B. He, Classifying EEG-based motor imagery tasks by means of time–frequency synthesized spatial patterns. Clin. Neurophysiol. 115(12), 2744–2753 (2004)

    Google Scholar 

  79. T. Wang, B. He, An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in a brain–computer interface. J. Neural Eng. 1(1), 1 (2004)

    Google Scholar 

  80. N. Yamawaki, C. Wilke, Z. Liu, B. He, An enhanced time-frequency-spatial approach for motor imagery classification. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 250–254 (2006)

    Google Scholar 

  81. D.J. McFarland, W.A. Sarnacki, J.R. Wolpaw, Electroencephalographic (EEG) control of three-dimensional movement. J. Neural Eng. 7(3) (2010). https://doi.org/10.1088/1741-2560/7/3/036007

  82. H. Yuan, B. He, Brain–computer interfaces using sensorimotor rhythms: Current state and future perspectives. IEEE Trans. Biomed. Eng. 61(5), 1425–1435 (2014)

    Google Scholar 

  83. A. Kübler, B. Kotchoubey, J. Kaiser, J.R. Wolpaw, N. Birbaumer, Brain–computer communication: Unlocking the locked in. Psychol. Bull. 127(3), 358 (2001)

    Google Scholar 

  84. N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kübler, et al., A spelling device for the paralysed. Nature 398(6725), 297 (1999)

    CAS  Google Scholar 

  85. E. Donchin, M.G. Coles, Is the P300 component a manifestation of context updating? Behav. Brain Sci. 11(3), 357–374 (1988)

    Google Scholar 

  86. R. Ortner, B.Z. Allison, G. Korisek, H. Gaggl, G. Pfurtscheller, An SSVEP BCI to control a hand orthosis for persons with tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 19(1), 1–5 (2011). https://doi.org/10.1109/TNSRE.2010.2076364

    Article  Google Scholar 

  87. J. Pan, X. Gao, F. Duan, Z. Yan, S. Gao, Enhancing the classification accuracy of steady-state visual evoked potential-based brain–computer interfaces using phase constrained canonical correlation analysis. J. Neural Eng. 8(3), 036027 (2011)

    Google Scholar 

  88. D.J. McFarland, L.M. McCane, S.V. David, J.R. Wolpaw, Spatial filter selection for EEG-based communication. Electroencephalogr. Clin. Neurophysiol. 103(3), 386–394 (1997)

    CAS  Google Scholar 

  89. B. He, R.J. Cohen, Body surface Laplacian ECG mapping. IEEE Trans. Biomed. Eng. 39(11), 1179–1191 (1992)

    CAS  Google Scholar 

  90. B. Hjorth, An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr. Clin. Neurophysiol. 39(5), 526–530 (1975)

    CAS  Google Scholar 

  91. B. He, Brain electric source imaging: Scalp Laplacian mapping and cortical imaging. Crit. Rev. Biomed. Eng. 27(3–5), 149–188 (1999)

    CAS  Google Scholar 

  92. B. He, J. Lian, G. Li, High-resolution EEG: A new realistic geometry spline Laplacian estimation technique. Clin. Neurophysiol. 112(5), 845–852 (2001)

    CAS  Google Scholar 

  93. B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, K.R. Müller, Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25(1), 41–56 (2008). https://doi.org/10.1109/MSP.2008.4408441

    Article  Google Scholar 

  94. A.J. Bell, T.J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7(6), 1129–1159 (1995)

    CAS  Google Scholar 

  95. D.J. McFarland, J.R. Wolpaw, Sensorimotor rhythm-based brain–computer interface (BCI): Model order selection for autoregressive spectral analysis. J. Neural Eng. 5(2), 155 (2008)

    Google Scholar 

  96. J. Deng, B. He, Classification of imaginary tasks from three channels of EEG by using an artificial neural network. Proceedings of the 25th annual international conference of the IEEE engineering in medicine and biology society CD-ROM, 2003

    Google Scholar 

  97. N. Lu, T. Li, X. Ren, H. Miao, A deep learning scheme for motor imagery classification based on restricted Boltzmann machines. IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 566–576 (2017). https://doi.org/10.1109/TNSRE.2016.2601240

    Article  Google Scholar 

  98. Y.R. Tabar, U. Halici, A novel deep learning approach for classification of EEG motor imagery signals. J. Neural Eng. 14(1), 016003 (2016)

    Google Scholar 

  99. A.L. Blum, P. Langley, Selection of relevant features and examples in machine learning. Artif. Intell. 97(1–2), 245–271 (1997)

    Google Scholar 

  100. H. Ramoser, J. Muller-Gerking, G. Pfurtscheller, Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 8(4), 441–446 (2000)

    CAS  Google Scholar 

  101. F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rakotomamonjy, F. Yger, A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update. J. Neural Eng. 15(3), 031005 (2018)

    CAS  Google Scholar 

  102. J. Meng, B. He, Exploring training effect in 42 human subjects using a non-invasive sensorimotor rhythm based online BCI. Front. Hum. Neurosci. 13, 128 (2019)

    Google Scholar 

  103. M. Congedo, A. Barachant, R. Bhatia, Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. Brain Comput Interfaces 4(3), 155–174 (2017)

    Google Scholar 

  104. A. Barachant, S. Bonnet, M. Congedo, C. Jutten, Multiclass brain-computer interface classification by Riemannian geometry. IEEE Trans. Biomed. Eng. 59(4), 920–928 (2012). https://doi.org/10.1109/TBME.2011.2172210

    Article  Google Scholar 

  105. J. Meng, T. Streitz, N. Gulachek, D. Suma, B. He, Three-dimensional brain–computer Interface control through simultaneous overt spatial attentional and motor imagery tasks. IEEE Trans. Biomed. Eng. 65(11), 2417–2427 (2018)

    Google Scholar 

  106. C.T. Moritz, S.I. Perlmutter, E.E. Fetz, Direct control of paralysed muscles by cortical neurons. Nature 456(7222), 639 (2008)

    CAS  Google Scholar 

  107. W.-K. Tam, K.-Y. Tong, F. Meng, S. Gao, A minimal set of electrodes for motor imagery BCI to control an assistive device in chronic stroke subjects: A multi-session study. IEEE Trans. Neural Syst. Rehabil. Eng. 19(6), 617–627 (2011)

    Google Scholar 

  108. F. Pichiorri, G. Morone, M. Petti, J. Toppi, I. Pisotta, M. Molinari, et al., Brain–computer interface boosts motor imagery practice during stroke recovery. Ann. Neurol. 77(5), 851–865 (2015)

    Google Scholar 

  109. E. Buch, C. Weber, L.G. Cohen, C. Braun, M.A. Dimyan, T. Ard, et al., Think to move: A neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39(3), 910–917 (2008)

    Google Scholar 

  110. H. Ring, N. Rosenthal, Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation. J. Rehabil. Med. 37(1), 32–36 (2005)

    Google Scholar 

  111. A. Ramos-Murguialday, D. Broetz, M. Rea, L. Läer, O. Yilmaz, F.L. Brasil, et al., Brain-machine interface in chronic stroke rehabilitation: A controlled study. Ann. Neurol. 74(1), 100–108 (2013). https://doi.org/10.1002/ana.23879

    Article  Google Scholar 

  112. G. Pfurtscheller, R. Leeb, C. Keinrath, D. Friedman, C. Neuper, C. Guger, M. Slater, Walking from thought. Brain Res. 1071(1), 145–152 (2006)

    CAS  Google Scholar 

  113. F. Lotte, J. Faller, C. Guger, Y. Renard, G. Pfurtscheller, A. Lécuyer, R. Leeb, Combining BCI with virtual reality: Towards new applications and improved BCI, in Towards Practical Brain-Computer Interfaces, (Springer, Berlin, Heidelberg, 2012), pp. 197–220

    Google Scholar 

  114. J. Mercier-Ganady, F. Lotte, E. Loup-Escande, M. Marchal, A. Lécuyer, The Mind-Mirror: See your brain in action in your head using EEG and augmented reality. Paper presented at the 2014 IEEE Virtual Reality (VR), 2014

    Google Scholar 

  115. N. Johnson, J. Carey, B. Edelman, A. Doud, A. Grande, K. Lakshminarayan, B. He, Combined rTMS and virtual reality brain–computer interface training for motor recovery after stroke. J. Neural Eng. 15(1), 016009 (2018)

    CAS  Google Scholar 

  116. M. Tani, Y. Ono, M. Matsubara, S. Ohmatsu, Y. Yukawa, M. Kohno, T. Tominaga, Action observation facilitates motor cortical activity in patients with stroke and hemiplegia. Neurosci. Res. 133, 7–14 (2018)

    CAS  Google Scholar 

  117. M. Gonzalez-Franco, J. Lanier, Model of illusions and virtual reality. Front. Psychol. 8, 1125 (2017)

    Google Scholar 

  118. I. Bermúdez, S. Badia, A. García Morgade, H. Samaha, P.F.M.J. Verschure, Using a hybrid brain computer interface and virtual reality system to monitor and promote cortical reorganization through motor activity and motor imagery training. IEEE Trans. Neural Syst. Rehabil. Eng. 21(2), 174–181 (2013). https://doi.org/10.1109/TNSRE.2012.2229295

    Article  Google Scholar 

  119. J. Kamiya, The first communications about operant conditioning of the EEG. J. Neurother. 15(1), 65–73 (2011)

    Google Scholar 

  120. N. Birbaumer, A.R. Murguialday, C. Weber, P. Montoya, Neurofeedback and brain–computer interface: Clinical applications. Int. Rev. Neurobiol. 86, 107–117 (2009)

    Google Scholar 

  121. R. Sitaram, T. Ros, L. Stoeckel, S. Haller, F. Scharnowski, J. Lewis-Peacock, et al., Closed-loop brain training: The science of neurofeedback. Nat. Rev. Neurosci. 18(2), 86 (2017)

    CAS  Google Scholar 

  122. S. Ruiz, K. Buyukturkoglu, M. Rana, N. Birbaumer, R. Sitaram, Real-time fMRI brain computer interfaces: Self-regulation of single brain regions to networks. Biol. Psychol. 95, 4–20 (2014)

    Google Scholar 

  123. J.A. Anguera, J. Boccanfuso, J.L. Rintoul, O. Al-Hashimi, F. Faraji, J. Janowich, et al., Video game training enhances cognitive control in older adults. Nature 501(7465), 97 (2013)

    CAS  Google Scholar 

  124. R. Abiri, S. Borhani, E.W. Sellers, Y. Jiang, X. Zhao, A comprehensive review of EEG-based brain-computer interface paradigms. J. Neural Eng. 16(1) (2019). https://doi.org/10.1088/1741-2552/aaf12e

  125. T.O. Zander, C. Kothe, S. Jatzev, M. Gaertner, Enhancing human-computer interaction with input from active and passive brain-computer interfaces, in Brain-Computer Interfaces, (Springer, London, 2010), pp. 181–199

    Google Scholar 

  126. C. Brunner, G. Andreoni, L. Bianchi, B. Blankertz, C. Breitwieser, S.I. Kanoh, et al., Bci software platforms, in Towards Practical Brain-Computer Interfaces, (Springer, Berlin, Heidelberg, 2012), pp. 303–331

    Google Scholar 

  127. G. Schalk, J. Mellinger, A Practical Guide to Brain–Computer Interfacing with BCI2000: General-Purpose Software for Brain-Computer Interface Research, Data Acquisition, Stimulus Presentation, and Brain Monitoring (Springer Science & Business Media, Springer, London, 2010)

    Google Scholar 

  128. J. Lindgren, A. Lecuyer, OpenViBE and other BCI software platforms, in Brain–Computer Interfaces 2: Technology and Applications, (2016), pp. 179–198

    Google Scholar 

  129. Y. Renard, F. Lotte, G. Gibert, M. Congedo, E. Maby, V. Delannoy, et al., Openvibe: An open-source software platform to design, test, and use brain–computer interfaces in real and virtual environments. Presence Teleop. Virt. 19(1), 35–53 (2010)

    Google Scholar 

  130. J.R. Wolpaw, Brain–computer interface research comes of age: Traditional assumptions meet emerging realities. J. Mot. Behav. 42(6), 351–353 (2010)

    Google Scholar 

  131. G. Pfurtscheller, D. Flotzinger, J. Kalcher, Brain-computer Interface-a new communication device for handicapped persons. J. Microcomput. Appl. 16(3), 293–299 (1993). https://doi.org/10.1006/jmca.1993.1030

    Article  Google Scholar 

  132. E.W. Sellers, T.M. Vaughan, J.R. Wolpaw, A brain-computer interface for long-term independent home use. Amyotroph. Lateral Scler. 11(5), 449–455 (2010)

    Google Scholar 

  133. G. Cattan, C. Mendoza, A. Andreev, M. Congedo, Recommendations for integrating a P300-based brain computer interface in virtual reality environments for gaming. Computers 7(2), 34 (2018)

    Google Scholar 

  134. Z. Gu, Z. Chen, J. Zhang, X. Zhang, Z.L. Yu, An online interactive paradigm for P300 brain–computer Interface speller. IEEE Trans. Neural Syst. Rehabil. Eng. 27(2), 152–161 (2019)

    Google Scholar 

  135. I. Käthner, A. Kübler, S. Halder, Rapid P300 brain-computer interface communication with a head-mounted display. Front. Neurosci. 9, 207 (2015)

    Google Scholar 

  136. G. Townsend, V. Platsko, Pushing the P300-based brain-computer interface beyond 100 bpm: Extending performance guided constraints into the temporal domain. J. Neural Eng. 13(2) (2016). https://doi.org/10.1088/1741-2560/13/2/026024

  137. B. Hong, F. Guo, T. Liu, X. Gao, S. Gao, N200-speller using motion-onset visual response. Clin. Neurophysiol. 120(9), 1658–1666 (2009)

    Google Scholar 

  138. G. Bin, X. Gao, Z. Yan, B. Hong, S. Gao, An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method. J. Neural Eng. 6(4), 046002 (2009)

    Google Scholar 

  139. M. Cheng, X. Gao, S. Gao, D. Xu, Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans. Biomed. Eng. 49(10), 1181–1186 (2002)

    Google Scholar 

  140. F. Guo, B. Hong, X. Gao, S. Gao, A brain–computer interface using motion-onset visual evoked potential. J. Neural Eng. 5(4), 477 (2008)

    Google Scholar 

  141. P.-L. Lee, J.-C. Hsieh, C.-H. Wu, K.-K. Shyu, Y.-T. Wu, Brain computer interface using flash onset and offset visual evoked potentials. Clin. Neurophysiol. 119(3), 605–616 (2008)

    Google Scholar 

  142. G. Bin, X. Gao, Y. Wang, Y. Li, B. Hong, S. Gao, A high-speed BCI based on code modulation VEP. J. Neural Eng. 8(2), 025015 (2011)

    Google Scholar 

  143. C. Jia, X. Gao, B. Hong, S. Gao, Frequency and phase mixed coding in SSVEP-based brain - computer interface. IEEE Trans. Biomed. Eng. 58(1), 200–206 (2011). https://doi.org/10.1109/TBME.2010.2068571

    Article  Google Scholar 

  144. G. Bin, X. Gao, Y. Wang, B. Hong, S. Gao, VEP-based brain-computer interfaces: Time, frequency, and code modulations [Research Frontier]. IEEE Comput. Intell. Mag. 4(4), 22–26 (2009)

    Google Scholar 

  145. X. Chen, Y. Wang, M. Nakanishi, X. Gao, T.P. Jung, S. Gao, High-speed spelling with a noninvasive brain-computer interface. Proc. Natl. Acad. Sci. U. S. A. 112(44), E6058–E6067 (2015). https://doi.org/10.1073/pnas.1508080112

    Article  CAS  Google Scholar 

  146. M. Nakanishi, Y. Wang, X. Chen, Y.T. Wang, X. Gao, T.P. Jung, Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans. Biomed. Eng. 65(1), 104–112 (2018). https://doi.org/10.1109/TBME.2017.2694818

    Article  Google Scholar 

  147. F. Nijboer, A. Furdea, I. Gunst, J. Mellinger, D.J. McFarland, N. Birbaumer, A. Kübler, An auditory brain–computer interface (BCI). J. Neurosci. Methods 167(1), 43–50 (2008)

    Google Scholar 

  148. M. Pham, T. Hinterberger, N. Neumann, A. Kübler, N. Hofmayer, A. Grether, et al., An auditory brain-computer interface based on the self-regulation of slow cortical potentials. Neurorehabil. Neural Repair 19(3), 206–218 (2005)

    Google Scholar 

  149. A. Furdea, S. Halder, D. Krusienski, D. Bross, F. Nijboer, N. Birbaumer, A. Kübler, An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology 46(3), 617–625 (2009)

    CAS  Google Scholar 

  150. J. Guo, S. Gao, B. Hong, An auditory brain–computer interface using active mental response. IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 230–235 (2010)

    Google Scholar 

  151. A. Kübler, A. Furdea, S. Halder, E.M. Hammer, F. Nijboer, B. Kotchoubey, A brain–computer interface controlled auditory event-related potential (P300) spelling system for locked-in patients. Ann. N. Y. Acad. Sci. 1157(1), 90–100 (2009)

    Google Scholar 

  152. S. Halder, T. Leinfelder, S.M. Schulz, A. Kübler, Neural mechanisms of training an auditory event-related potential task in a brain–computer interface context. Hum. Brain Mapp. 40(8), 2399–2412 (2019). https://doi.org/10.1002/hbm.24531

    Article  Google Scholar 

  153. G. Pfurtscheller, B.Z. Allison, G. Bauernfeind, C. Brunner, T. Solis Escalante, R. Scherer, et al., The hybrid BCI. Front. Neurosci. 4, 3 (2010)

    Google Scholar 

  154. V. Kaiser, G. Bauernfeind, A. Kreilinger, T. Kaufmann, A. Kübler, C. Neuper, G.R. Müller-Putz, Cortical effects of user training in a motor imagery based brain–computer interface measured by fNIRS and EEG. NeuroImage 85, 432–444 (2014)

    Google Scholar 

  155. F. Putze, S. Hesslinger, C.-Y. Tse, Y. Huang, C. Herff, C. Guan, T. Schultz, Hybrid fNIRS-EEG based classification of auditory and visual perception processes. Front. Neurosci. 8, 373 (2014)

    Google Scholar 

  156. M. Li, S. Guo, G. Zuo, Y. Sun, J. Yang, Removing ocular artifacts from mixed EEG signals with FastKICA and DWT. J Intell Fuzzy Syst 28(6), 2851–2861 (2015)

    Google Scholar 

  157. B.-H. Yang, L.-F. He, L. Lin, Q. Wang, Fast removal of ocular artifacts from electroencephalogram signals using spatial constraint independent component analysis based recursive least squares in brain-computer interface. Front. Inf. Technol. Electron. Eng. 16(6), 486–496 (2015)

    Google Scholar 

  158. K.-S. Hong, M.J. Khan, Hybrid brain–computer interface techniques for improved classification accuracy and increased number of commands: A review. Front. Neurorobot. 11, 35 (2017)

    Google Scholar 

  159. J. Zhao, W. Li, M. Li, Comparative study of SSVEP-and P300-based models for the telepresence control of humanoid robots. PLoS One 10(11), e0142168 (2015)

    Google Scholar 

  160. S. Crea, M. Nann, E. Trigili, F. Cordella, A. Baldoni, F.J. Badesa, et al., Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living. Sci. Rep. 8(1), 10823 (2018)

    Google Scholar 

  161. S. Soekadar, M. Witkowski, C. Gómez, E. Opisso, J. Medina, M. Cortese, et al., Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. Sci. Robot. 1(1) (2016). eaag3296: 3291–3298

    Google Scholar 

  162. H.-J. Hwang, J.-H. Lim, Y.-J. Jung, H. Choi, S.W. Lee, C.-H. Im, Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard. J. Neurosci. Methods 208(1), 59–65 (2012)

    Google Scholar 

  163. Y. Li, G. Zhou, D. Graham, A. Holtzhauer, Towards an EEG-based brain-computer interface for online robot control. Multimed. Tools Appl. 75(13), 7999–8017 (2016)

    Google Scholar 

  164. A. Gunduz, P. Brunner, A. Daitch, E.C. Leuthardt, A.L. Ritaccio, B. Pesaran, G. Schalk, Decoding covert spatial attention using electrocorticographic (ECoG) signals in humans. NeuroImage 60(4), 2285–2293 (2012)

    Google Scholar 

  165. S.P. Kelly, E.C. Lalor, C. Finucane, G. McDarby, R.B. Reilly, Visual spatial attention control in an independent brain-computer interface. IEEE Trans. Biomed. Eng. 52(9), 1588–1596 (2005)

    Google Scholar 

  166. S.P. Kelly, E.C. Lalor, R.B. Reilly, J.J. Foxe, Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication. IEEE Trans. Neural Syst. Rehabil. Eng. 13(2), 172–178 (2005)

    Google Scholar 

  167. D. Zhang, A. Maye, X. Gao, B. Hong, A.K. Engel, S. Gao, An independent brain–computer interface using covert non-spatial visual selective attention. J. Neural Eng. 7(1), 016010 (2010)

    Google Scholar 

  168. L. Tonin, R. Leeb, J. Del R. Millán, Time-dependent approach for single trial classification of covert visuospatial attention. J. Neural Eng. 9(4) (2012). https://doi.org/10.1088/1741-2560/9/4/045011

  169. L. Tonin, R. Leeb, A. Sobolewski, J. del R Millán, An online EEG BCI based on covert visuospatial attention in absence of exogenous stimulation. J. Neural Eng. 10(5), 056007 (2013)

    CAS  Google Scholar 

  170. J. Ekanayake, C. Hutton, G. Ridgway, F. Scharnowski, N. Weiskopf, G. Rees, Real-time decoding of covert attention in higher-order visual areas. NeuroImage 169, 462–472 (2018)

    Google Scholar 

  171. L. Astolfi, J. Toppi, F. De Vico Fallani, G. Vecchiato, F. Cincotti, C.T. Wilke, et al., Imaging the social brain by simultaneous hyperscanning during subject interaction. IEEE Intell. Syst. 26(5), 38–45 (2011). https://doi.org/10.1109/MIS.2011.61

    Article  Google Scholar 

  172. F. De Vico Fallani, V. Nicosia, R. Sinatra, L. Astolfi, F. Cincotti, D. Mattia, et al., Defecting or not defecting: How to “read” human behavior during cooperative games by EEG measurements. PLoS One 5(12) (2010). https://doi.org/10.1371/journal.pone.0014187

  173. M.E.M. Mashat, G. Li, D. Zhang, Human-to-human closed-loop control based on brain-to-brain interface and muscle-to-muscle interface. Sci. Rep. 7(1) (2017). https://doi.org/10.1038/s41598-017-10957-z

  174. R.P.N. Rao, A. Stocco, M. Bryan, D. Sarma, T.M. Youngquist, J. Wu, C.S. Prat, A direct brain-to-brain interface in humans. PLoS One 9(11) (2014). https://doi.org/10.1371/journal.pone.0111332

  175. L. Jiang, A. Stocco, D.M. Losey, J.A. Abernethy, C.S. Prat, R.P.N. Rao, BrainNet: A multi-person brain-to-brain Interface for direct collaboration between brains. Sci. Rep. 9(1) (2019). https://doi.org/10.1038/s41598-019-41895-7

  176. J.R. Wolpaw, H. Ramoser, D.J. McFarland, G. Pfurtscheller, EEG-based communication: Improved accuracy by response verification. IEEE Trans. Rehabil. Eng. 6(3), 326–333 (1998)

    CAS  Google Scholar 

  177. D. McFarland, D. Krusienski, J. Wolpaw, E. Wolpaw, BCI signal processing: Feature translation, in Brain–Computer Interfaces: Principles and Practice, (Oxford University Press, New York, 2012), pp. 147–164

    Google Scholar 

  178. J.L. Collinger, B. Wodlinger, J.E. Downey, W. Wang, E.C. Tyler-Kabara, D.J. Weber, et al., High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866), 557–564 (2013)

    Google Scholar 

  179. B. Wodlinger, J. Downey, E. Tyler-Kabara, A. Schwartz, M. Boninger, J. Collinger, Ten-dimensional anthropomorphic arm control in a human brain− machine interface: Difficulties, solutions, and limitations. J. Neural Eng. 12(1), 016011 (2014)

    Google Scholar 

  180. V. Gilja, C. Pandarinath, C.H. Blabe, P. Nuyujukian, J.D. Simeral, A.A. Sarma, et al., Clinical translation of a high-performance neural prosthesis. Nat. Med. 21(10), 1142 (2015)

    CAS  Google Scholar 

  181. C. Pandarinath, P. Nuyujukian, C.H. Blabe, B.L. Sorice, J. Saab, F.R. Willett, et al., High performance communication by people with paralysis using an intracortical brain-computer interface. elife 6, e18554 (2017)

    Google Scholar 

  182. E.A. Curran, M.J. Stokes, Learning to control brain activity: A review of the production and control of EEG components for driving brain–computer interface (BCI) systems. Brain Cogn. 51(3), 326–336 (2003)

    Google Scholar 

  183. N. Birbaumer, A. Kübler, N. Ghanayim, T. Hinterberger, J. Perelmouter, J. Kaiser, et al., The thought translation device (TTD) for completely paralyzed patients. IEEE Trans. Rehabil. Eng. 8(2), 190–193 (2000). https://doi.org/10.1109/86.847812

    Article  CAS  Google Scholar 

  184. W.D. Penny, S.J. Roberts, EEG-based communication via dynamic neural network models. Proceedings of the IJCNN′99 International Joint Conference on Neural Networks (Cat. No. 99CH36339), 1999

    Google Scholar 

  185. K. Cassady, A. You, A. Doud, B. He, The impact of mind-body awareness training on the early learning of a brain-computer interface. Tech. 2(03), 254–260 (2014)

    Google Scholar 

  186. C. Guger, S. Daban, E. Sellers, C. Holzner, G. Krausz, R. Carabalona, et al., How many people are able to control a P300-based brain–computer interface (BCI)? Neurosci. Lett. 462(1), 94–98 (2009)

    CAS  Google Scholar 

  187. B. Allison, T. Luth, D. Valbuena, A. Teymourian, I. Volosyak, A. Graser, BCI demographics: How many (and what kinds of) people can use an SSVEP BCI? IEEE Trans. Neural Syst. Rehabil. Eng. 18(2), 107–116 (2010)

    Google Scholar 

  188. B. Blankertz, C. Sannelli, S. Halder, E.M. Hammer, A. Kübler, K.-R. Müller, et al., Neurophysiological predictor of SMR-based BCI performance. NeuroImage 51(4), 1303–1309 (2010)

    Google Scholar 

  189. C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, G. Pfurtscheller, How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 145–147 (2003). https://doi.org/10.1109/TNSRE.2003.814481

    Article  CAS  Google Scholar 

  190. L. Yao, J. Meng, D. Zhang, X. Sheng, X. Zhu, Combining motor imagery with selective sensation toward a hybrid-modality BCI. IEEE Trans. Biomed. Eng. 61(8), 2304–2312 (2014). https://doi.org/10.1109/TBME.2013.2287245

    Article  Google Scholar 

  191. M. Grosse-Wentrup, B. Schölkopf, A review of performance variations in SMR-based Brain− Computer interfaces (BCIs), in Brain-Computer Interface Research, (Springer, Berlin, Heidelberg, 2013), pp. 39–51

    Google Scholar 

  192. C. Jeunet, B. N'Kaoua, F. Lotte, Advances in user-training for mental-imagery-based BCI control: Psychological and cognitive factors and their neural correlates, in Vol. 228. Progress in Brain Research, (2016), pp. 3–35

    Google Scholar 

  193. K. Ganguly, J.M. Carmena, Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol. 7(7), e1000153 (2009)

    Google Scholar 

  194. S.N. Flesher, J.L. Collinger, S.T. Foldes, J.M. Weiss, J.E. Downey, E.C. Tyler-Kabara, et al., Intracortical microstimulation of human somatosensory cortex. Sci. Trans. Med. 8(361), 361ra141 (2016)

    Google Scholar 

  195. J.R. Pierce, An Introduction to Information Theory (Dover Press, New York, 1980)

    Google Scholar 

  196. C.E. Shannon, W. Weaver, The Mathematical Theory of Communication (University of Illinois Press, 1964)

    Google Scholar 

  197. J. Malmivuo, R. Plonsey, Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields (Oxford University Press, New York, USA, 1995)

    Google Scholar 

  198. M.A. Dimyan, L.G. Cohen, Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 7(2), 76–85 (2011)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH AT009263, EB021027, EB006433, NS096761, MH114233, NSF CBET-0933067 (B.H.), as well as by NSF of China-90820304 (S.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin He .

Editor information

Editors and Affiliations

Homework

Homework

  1. 1.

    Answer the following questions about the general aspects of BCI.

    1. (1.1)

      Define brain–computer interface (BCI) in your own words.

    2. (1.2)

      Describe at least 3 examples of BCI according to different signal resources and explain their pros and cons.

    3. (1.3)

      Describe what the unique challenges of BCI research are.

    4. (1.4)

      If you want to decode people’s imagery movement, which brain areas do you want to choose in order to build an EEG-based BCI?

  2. 2.

    Answer the following questions about the BCI signal acquisition.

    1. (2.1)

      What is the spatial resolution of noninvasive techniques such as EEG, MEG, and fMRI?

    2. (2.2)

      What is the spatial resolution of invasive techniques such as ECoG, multi-unit recording?

    3. (2.3)

      What is the temporal resolution of noninvasive techniques such as EEG, MEG, and fMRI?

    4. (2.4)

      For EEG-based BCI, does increasing the electrode number help to improve the decoding accuracy of motor imagination? Why?

    5. (2.5)

      Does the combination of different noninvasive modalities help to improve the decoding accuracy such as the simultaneous acquisition of EEG and fMRI? Please explain why?

  3. 3.

    Answer the following questions about the BCI feature extraction.

    1. (3.1)

      What kind of features could be extracted to decode the event-related potentials (ERP)?

    2. (3.2)

      Is it possible to decode the ERP in single trials? Please explain.

    3. (3.3)

      What kind of features could be used to decode the motor imagery–induced sensorimotor rhythms?

  4. 4.

    Answer the following questions about the SSVEP BCI.

    1. (4.1)

      What is the limitation to use a computer monitor as the display of the flicker in a steady-state visual evoked potential (SSVEP)–based BCI?

    2. (4.2)

      Download one of the examples (shared data, e.g., S1.mat, http://thubci.org/en/index.php?s=/home/index/nr/id/100/page/1.html) from the shared data in the ‘Wang et al (2016). A benchmark dataset for SSVEP-based brain–computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(10), 1746-1752.’ Plot the power spectrum of electrode Oz from any one of the 40 targets in a single block and the average from all of the six blocks.

  5. 5.

    Answer the following questions about the motor imagery–based BCI.

    1. (5.1)

      Download one of the examples (shared data, e.g., S1_LR_20150130.mat) from the shared data in [14] and Readme file to learn the structure of the shared data.

    2. (5.2)

      Extract the multichannel signals of each trial; calculate the average feedback duration for the example session.

    3. (5.3)

      Calculate the average band power (8–13 Hz) of channel C3 and C4 over all of the left trials, respectively.

    4. (5.4)

      Calculate the average band power (8–13 Hz) of channel C3 and C4 over all of the right trials, respectively.

    5. (5.5)

      Compare the above average band power for left trials and right trials. Describe the difference.

  6. 6.

    What kinds of classification algorithms are commonly used in the EEG–based BCI?

  7. 7.

    Answer the following questions about robotic arm control using BCI.

    1. (7.1)

      Please explain what are the pros and cons to control a prosthetic or robotic arm by using different types of noninvasive BCI, such as SSVEP based and sensorimotor rhythm based.

    2. (7.2)

      What is the challenge for control of a high degree of freedom (DoF) robotic arm by noninvasive BCIs? Please describe your solution of controlling a high DoF robotic arm.

  8. 8.

    Answer the following questions about BCI applications.

    1. (8.1)

      What BCI could be used as a tool? Please describe at least three examples.

    2. (8.2)

      Please describe how BCIs could be used to induce tactile sensation neurofeedback.

  9. 9.

    Answer the following questions about the hybrid BCI.

    1. (9.1)

      Please describe an example of the hybrid BCI.

    2. (9.2)

      Please describe your solution of driving a wheelchair mounting with an assistive robotic arm to help drinking and eating via a hybrid BCI.

  10. 10.

    Answer the following questions about information transfer rate of BCI.

    1. (10.1)

      What is the state-of-the-art information transfer rate (ITR) of different types of noninvasive–based BCIs?

    2. (10.2)

      Please describe a possible solution of increasing the ITR of a noninvasive sensorimotor rhythm–based BCI and explain why it might work.

  11. 11.

    Answer the following questions about BCI development.

    1. (11.1)

      Please list three most important questions to be addressed in order to significantly improve the field of BCI.

    2. (11.2)

      Please discuss the potential of BCI application in the clinical field.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, B., Yuan, H., Meng, J., Gao, S. (2020). Brain–Computer Interfaces. In: He, B. (eds) Neural Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-43395-6_4

Download citation

Publish with us

Policies and ethics