Skip to main content
Log in

Movement-related parameters modulate cortical activity during imaginary isometric plantar-flexions

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

A multitude of studies have demonstrated a clear activation of the motor cortex during imagination of various motor tasks; however, it is still unclear if movement-related parameters (movement direction, range of motion, speed, force level and rate of force development) specifically modulate cortical activation as they do during the execution of actual motor tasks. Accordingly, this study examined whether the rate of torque development (RTD) and/or the torque amplitude modulates cortical potentials generated during imaginary motor tasks. Fifteen subjects imagined four different left-sided isometric plantar-flexion tasks, while EEG and EMG recordings were being performed. The averaged EEG activity was analyzed in terms of movement-related potentials (MRPs), consisting of readiness potential (RP), motor potential (MP) and movement-monitoring potential (MMP). It was demonstrated that RTD and torque amplitude indeed modulate cortical activity during imaginary motor tasks. Information concerning movement-related parameters for imaginary plantar-flexion tasks seems to be encoded in the supplementary motor area (SMA) and the primary motor cortex (M1). A comparison between MRPs of imaginary and actual motor tasks revealed that early MRPs were morphologically similar, but differed significantly in amplitude. One of the possible suggestions to explain such a difference may be an “abortion” of ongoing motor programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agnew JA, Zeffiro TA, Eden GF (2004) Left hemisphere specialization for the control of voluntary movement rate. Neuroimage 22(1):289–303

    Article  PubMed  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  CAS  Google Scholar 

  • American Electroencephalographic Society (1994) Guideline thirteen: guidelines for standard electrode position nomenclature. J Clin Neurophysiol 11:111–113

    Article  Google Scholar 

  • Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30(2):161–173

    Article  PubMed  CAS  Google Scholar 

  • Beisteiner R, Hollinger P, Lindinger G, Lang W, Berthoz A (1995) Mental representations of movements. Brain potentials associated with imagination of hand movements. Electroencephalogr Clin Neurophysiol 96(2):183–193

    Article  PubMed  CAS  Google Scholar 

  • Bonnet M, Decety J, Jeannerod M, Requin J (1997) Mental simulation of an action modulates the excitability of spinal reflex pathways in man. Brain Res Cogn Brain Res 5:221–228

    Article  PubMed  CAS  Google Scholar 

  • Brunia CH, Van den Bosch WE (1984) Movement-related slow potentials. I. A contrast between finger and foot movements in right-handed subjects. Electroencephalogr Clin Neurophysiol 57:515–527

    Article  PubMed  CAS  Google Scholar 

  • Brunia CH, Voom FJ, Berger MP (1985) Movement related slow potentials. II. A contrast between finger and foot movements in left-handed subjects. Electroencephalogr Clin Neurophysiol 60:135–145

    Article  PubMed  CAS  Google Scholar 

  • Cunnington R, Iansek R, Bradshaw JL, Phillips JG (1996) Movement-related potentials associated with movement preparation and motor imagery. Exp Brain Res 111:429–436

    Article  PubMed  CAS  Google Scholar 

  • Dai TH, Liu JZ, Sahgal V, Brown RW, Yue GH (2001) Relationship between muscle output and functional MRI-measured brain activation. Exp Brain Res 140(3):290–300

    Article  PubMed  CAS  Google Scholar 

  • Decety J, Grèzes J (1999) Neural mechanisms subserving the perception of human actions. Trends Cogn Sci 3(5):172–178

    Article  PubMed  Google Scholar 

  • Deiber MP, Passingham RE, Colebatch JG, Friston KJ, Nixon PD, Frackowiak RS (1991) Cortical areas and the selection of movement: a study with positron emission tomography. Exp Brain Res 84(2):393–402

    Article  PubMed  CAS  Google Scholar 

  • Deiber MP, Ibanez V, Sadato N, Hallett M (1996) Cerebral structures participating in motor preparation in humans: a positron emission tomography study. J Neurophysiol 75:233–247

    PubMed  CAS  Google Scholar 

  • Deiber MP, Honda M, Ibanez V, Sadato N, Hallett M (1999) Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. J Neurophysiol 81(6):3065–3077

    PubMed  CAS  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. J Neurosci Methods 134:9–21

    Article  PubMed  Google Scholar 

  • van Dijk JH (1979) A theory on the control of arbitrary movements. Biol Cybern 32(4):187–199

    Article  PubMed  Google Scholar 

  • Ehrsson HH, Naito E, Geyer S, Amunts K, Zilles K, Forssberg H, Roland PE (2000) Simultaneous movements of upper and lower limbs are coordinated by motor representations that are shared by both limbs: a PET study. Eur J Neurosci 12:3385–3398

    Article  PubMed  CAS  Google Scholar 

  • Ersland L, Rosen G, Lundervold A, Smievoll AI, Tillung T, Sundberg H, Hugdahl K (1996) Phantom limb imaginary fingertapping causes primary motor cortex activation: an fMRI study. Neuroreport 8(1):207–210

    Article  PubMed  CAS  Google Scholar 

  • Fattapposta F, Pierelli F, My F, Mostarda M, Del Monte S, Parisi L, Serrao M, Morocutti A, Amabile G (2002) L-dopa effects on preprogramming and control activity in a skilled motor act in Parkinson’s disease. Clin Neurophysiol 113(2):243–253

    Article  PubMed  CAS  Google Scholar 

  • Ghez C, Krakauer J (2000) The organization of movement. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science. McGraw-Hill, New York, pp 653–673

    Google Scholar 

  • Hink RF, Deecke L, Kornhuber HH (1983) Force uncertainty of voluntary movement and human movement-related potentials. Biol Psychol 16(3–4):197–210

    Article  PubMed  CAS  Google Scholar 

  • Jenkins IH, Jahanshahi M, Jueptner M, Passingham RE, Brooks DJ (2000) Self-initiated versus externally triggered movements. II. The effect of movement predictability on regional cerebral blood flow. Brain 123(Pt 6):1216–1228

    Article  PubMed  Google Scholar 

  • Juul PR, Ladouceur M, Nielsen KD (2000) Coding of lower limb muscle force generation in associated EEG movement related potentials: preliminary studies toward a feed-forward control of FES-assisted walking. In: Sinkjær T, Popovic D, Struijk JJ. Aalborg University, Denmark, pp 335–337. Conference proceeding

  • Klem GH, Lüders HO, Jasper HH, Elger C (1999) The ten-twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol Suppl 52:3–6

    PubMed  CAS  Google Scholar 

  • Lacourse MG, Cohen MJ, Lawrence KE, Romero DH (1999) Cortical potentials during imagined movements in individuals with chronic spinal cord injuries. Behav Brain Res 104(1–2):73–88

    Article  PubMed  CAS  Google Scholar 

  • Lee KM, Chang KH, Roh JK (1999) Subregions within the supplementary motor area activated at different stages of movement preparation and execution. Neuroimage 9:117–123

    Article  PubMed  CAS  Google Scholar 

  • Maruno N, Kaminaga T, Mikami M, Furui S (2000) Activation of supplementary motor area during imaginary movement of phantom toes. Neurorehabil Neural Repair 14(4):345–349

    PubMed  CAS  Google Scholar 

  • Masaki H, Takasawa N, Yamazaki K (1998) Enhanced negative slope of the readiness potential preceding a target force production task. Electroencephalogr Clin Neurophysiol 108(4):390–397

    Article  PubMed  CAS  Google Scholar 

  • do Nascimento OF, Nielsen KD, Voigt M (2005) Relationship between plantar-flexor torque generation and the magnitude of the movement-related potentials. Exp Brain Res 160:154–165

    Article  PubMed  Google Scholar 

  • Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain–computer communication. Proc IEEE 89(7):1123–1134

    Article  Google Scholar 

  • Porro CA, Cettolo V, Francescato MP, Baraldi P (2000) Ipsilateral involvement of primary motor cortex during motor imagery. Eur J Neurosci 12(8):3059–3063

    Article  PubMed  CAS  Google Scholar 

  • Ranganathan VK, Siemionow V, Sahgal V, Liu JZ, Sahgal V, Yue GH (2004) From mental power to muscle power—gaining strength by using the mind. Neuropsychologia 42:944–956

    Article  PubMed  Google Scholar 

  • Rijntjes M, Dettmers C, Buchel C, Kiebel S, Frackowiak RS, Weiller C (1999) A blueprint for movement: functional and anatomical representations in the human motor system. J Neurosci 19:8043–8048

    PubMed  CAS  Google Scholar 

  • Romero DH, Lacourse MG, Lawrence KE, Schandler S, Cohen MJ (2000) Event-related potentials as a function of movement parameter variations during motor imagery and isometric action. Behav Brain Res 117(1–2):83–96

    Article  PubMed  CAS  Google Scholar 

  • Siemionow V, Yue GH, Ranganathan VK, Liu JZ, Sahgal V (2000) Relationship between motor activity-related cortical potential and voluntary muscle activation. Exp Brain Res 133(3):303–311

    Article  PubMed  CAS  Google Scholar 

  • Siemionow V, Fang Y, Sahgal V, Boros J, Yue GH (2002) Relationship between motor activity-related cortical potential and lower extremity muscle activation, Program No. 366.1, Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington. Online

  • Siemionow V, Boros J, Fang Y, Yao B, Liu JZ, Sahgal V, Yue GH (2003) Linear frequency modulation of EEG signals during voluntary activation of human lower extremity muscles. Program No. 708.4, Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington. Online

  • Slobounov S, Tutwiler R, Rearick M, Challis JH (1999) EEG correlates of finger movements with different inertial load conditions as revealed by averaging techniques. Clin Neurophysiol 110:1764–1773

    Article  PubMed  CAS  Google Scholar 

  • Slobounov S, Rearick M, Chiang H (2000a) EEG correlates of finger movements as a function of range of motion and pre-loading conditions. Clin Neurophysiol 111:1997–2007

    Article  CAS  Google Scholar 

  • Slobounov SM, Rearick MP, Simon RF, Johnston JA (2000b) Movement-related potentials are task or end-effector dependent: evidence from a multifinger experiment. Exp Brain Res 135:106–116

    Article  CAS  Google Scholar 

  • Slobounov S, Johnston J, Chiang H, Ray W (2002) Movement-related EEG potentials are force or end-effector dependent: evidence from a multi-finger experiment. Clin Neurophysiol 113:1125–1135

    Article  PubMed  CAS  Google Scholar 

  • Spence SA, Frith CD (1999) Towards a functional anatomy of volition. J Conscious Stud 6:11–29

    Google Scholar 

  • Yom-Tov E, Grossman A, Inbar GF (2001) Movement-related potentials during the performance of a motor task I: the effect of learning and force. Biol Cybern 85:395–399

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank the financial support provided by Vale do Paraíba University (UNIVAP) and Center for Sensory-Motor Interaction (SMI) from the Department of Health Science & Technology (HST) at Aalborg University (AAU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Feix do Nascimento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nascimento, O.F.d., Nielsen, K.D. & Voigt, M. Movement-related parameters modulate cortical activity during imaginary isometric plantar-flexions. Exp Brain Res 171, 78–90 (2006). https://doi.org/10.1007/s00221-005-0247-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0247-z

Keywords

Navigation